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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1897

EVALUATION OF A TECHNIQUE FOR DETE_41NING TI_._-INVARIAh_ AND

TIS_-VARIANT DYNAMIC CHARACTERISTICS OF }USMAN PILOTS

By Jerome I. Elkind, Edward A. Start,

David M. Green, and D. Lucille Darley

A technique for determining the time-varying dynamic response charac-

teristics of human pilots in tracking tasks is presented. The technique

is based on a model adjustment or mimicl_ng procedure in which a model

composed of filters whose impulse responses are orthogonalized exponential

functions is used. The fll_ers are connected in parallel and their out-

puts are welghted and added together. The weights are determined so that

the mean-square difference between the output of the model and the out-

put of the pilot is mlnln_m. Tlme-vary!r_ characteristics are measured

by determining successively the model weights from short samples of _he

input and output signals of the human operator.

The model weights are partial regression coefficients of the pilot's

output on each of the filter outputs used in the model. By maki_ use of

l_nown statistical properties of regression coefficients, distribution

functions for the model weights are derived for the case in which the

residual error, the part of the pilot's output that cannot be accounted

for by the model, has a normal distribution. Relations for estimating

the length of sample of input and output signals required to determine the

weights with given confidence limits are derived.

The measurement technique has been implemented on a high speed digital

computer. Results obtained by applying the technique to measurement of a

variety of digital filters, analog filters and human operator dynamic

response characteristics are presented. It is shown that a model composed

of five properly chosen filters can approximate a large variety of systems

with an error of about one percent or less.



i. INTRODUCTION

The idea of representing human operator dynamic response characteP-

±stics by linear transfer functions zo as to permit the application of the

theory of linear servomechanisms to manual control problems originated

during World War II in the work of A. Sobczyk, R. S. Phillips, and H. K. Weiss

(refs. 1-3) and of Tustin (refs. 4-6). Tustin introduced the concept of

dete_nining (from measurements a human operator input and output) a linear

operator to describe the human's dynamic characteristics and recognized

the existence of a remnant, the portion of the human operator's responzc

behavior that could not be attributed to this linear operation on the input.

These early studies have served as the basis for much of rescarch in h_an

operator dynamic response characteristics that has been performed in the

last fifteen years (see refs. 7 and 8 for a stur_ary of this research).

An important aspect of research in human operator dynamics has bccn

the development of techniques for dete_ning human operator characteristics,

that is, his transfer function. As might be expected from thc fact that

the human is an adaptive, time-varying, nonlinear controller whose charac-

teristics depend upon the forcing function input to the control system and

upon the characteristics of the controlled element, measurement of human

operator dynamic characteristics presents some special problems. Frequent-

ly, it is not possible to remove him from the control system, to alter his

connections with the rest of the system, or to apply special teat signals

as inputs without causing significant changes in his dynamic response be-

havior. Under these circumstances, it is necessary either to measure his

characteristics in situ, that is, in the actual operational situation, or

in a simulated situation in which the characteristics of those elements

and signals which are important determinants of human operator behavior

are faithfully reproduced (refs. 7-11).

Most measurements of human operator dynamic characteristics have been

made using one of three techniques: Fourier analysis, correlation techniques,

or model adjustment techniques. Tustin (ref. 6), Russell (ref. 10), and

Sheridan (ref. 12), used input signals composed of a small number of slnu-

soids and performed a Fourier analysis of pilot output at each of the

frequencies used in the Imput signal. Cross-correlation and cross-power

density spectra techniques (refs. 13-15) have been used by Elkind (refs. 9,
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16), Fa_endei (ref. 7) and Hall (ref. ii). Model adjustment techniques

have been employed by a group at Goodyear Aircraft (ref. 17) , 0rnste_n

(ref 18), and Goodman and Reswiek (ref. 19).

In the Fourier analysis technique an input forcing function composcd

of the sum of a small number of sinusoids is uscd. The correlation of the

human operator's output with each of the sinusoids used in the input and by

these sinusoids shifted in phase by 90 dcgrecs is computed. The correl-

ations obtained are the coefficicnts of the sine and cosine scries repre-

sentation of the part of the operator's response that is linearly related

to the input. By norn_lizing thcse corrclations with respcct to the ampli-

tudes of the input sinusoids, values of the human operator's transfer

function are obtained at the frequencies contained in the input.

The corrclation technique rests upon the fact that the cross-correla-

tion function of input forcing function and human operator responsc is

equal to the convolution of the input autocorrelation function and the

impulse response of the linear operator that provides the least mean-square

error approximation to the human operator's response. If the input is

gaussian, the human opcrator's transfer function can be obtained by simply

Fourier transforming the correlation functions. From the autocorrelation

function of the human operator's response and its Fourier transform, the

power spectrum of human operator's rer_ant can be determined. A modifi-

cation of the correlation technique is to compute (1) the cross-power

density spec'trum between the input signal and the operator's response,

(2) the power spectrum of the input and (3) the power spectrum of the

response directly from the time functions of these signals without first

computing the correlation functions. Human operator transfer function

and the power spectrum of the remnant are determined directly from these

power and cross-power density spectra.

In the third analysis method, the model adjustment technique, a model

for the human operator is constructed and fed the same input as the operator.

The parameters of the model are adjusted until a good match between model

output and human operator output is achieved. A number of different model
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matching techniques have been used. In the study conducted at Goodycar
Aircraft (ref. 17), a model incorporating somesimple nonlinearities was
constructed on an analog computcr. The.parameters of the model, cocffi-
clents of the differential cquation and of the nonlinearities that were
simulated, were adjusted to obtain a good visual match to humanoperator's
response. Ornstein (ref. i_) used an analog computer to simulate a
linear model for the humanoperator. Hc automatically adjustcd the
parameters of the model (coefficients of a differential equation) to achieve
the least mean-square error approximation to humanoperator characteristics.
Goodmanand Reswick (ref. 19) used what was essentially a tapped delay line
(a delay-line synthesizer) to sinmlate the humanoperator's impulsc response.
The autocorrelation function of input signal to the operator (not thc input
forcing function to the system) was fed to the delay llne. Thc outputs of
the taps were weighted and then added togethcr. The weights were adjusted
to give a good visual fit to the cross-corrclatlon function between input
and response.

Each of these techniques has certain advantages and disadvantages.
The Fourier analysis method is very simple and inexpensive to instrument
and lends itself to real-time analysis of opera_or charactcristics. The
real and imaginary parts of the opel_tor's transfer function can bc com-
puted as the trac1_ng run is performed. However, the method cannot be
used for determining the power spectrum of the remnant. Also, it is
necessary to excite the system being studied artificially by a signal
composedof sinusoids and therefore humanoperator characteristics can-
not be measuredusing the signals naturally present in the system. Finally,
samples of the system input and operator response signals must be several
times longer than the period of the sinusoid at which measurementsare
being madeor the sample length must be carefully adjusted to be an in-
tegral multiple of the periods of all the input sinusoids if accurate
measurementsare to be made. Sheridan (ref. 12) found that it was neces-
sary to use samples 15 seconds long in order to obtain reasonably accurate
transfer function measurements.

The correlation and spectral techniques have the advantage that the



power spectrum of the operator's remnant can be computed. Ho_.;ever,
the method is more complicated than the Fourier analysis technique and i_
not easily adapted to real-time, on-llne data analysis. Artificial input
signals must be used or it must be possible to isolate the input signal to

t_e system. The sample length required to obtain accurate measurenents

depends upon the bandwidth of the filters used to find thc po_qer spectra.

Typically, 25 to 30 second-long samples are necessary if reasonable resolu-

tion in frequency is to be achievcd.

The model adjustment techniques permit measurement with the signals

that normally circulate in the control loop and artificial inputs are not

required. The principal advantage of the Goodyear and Ornsteln techniques,

which are based on simulation of a differcntial equation, is that they

yield directly in closed form an analytic expression for the transfer

functio_ approximation to the human operator characteristics. However,

the coefficients of this approximation, the coefficients of the differ-

ential equation, have to be determined by "cut-and-try" or "hill-cli_nbir_"

procedures. There does not scem to be an analytic proccdure for finding

the coefficients. The technique also requires an assumption of the form

of pilot transfer function. Since there may be a strong Interaction among

the coefficients being adjusted (the value of one coefficient influences

the values of the others), inaccurate rcsults may be obtained if ti_c

operator's actual characteristics arc not of the assumcd form, Thc

remnant waveform can be determined by exciting the model _.sith the input

to the human operator and subtracti_ the model output from his output.

The model adjustment technie_e of Goodman and Res_lick does not require an

assumption of the form of the human's characteristics. An analytic pro-

cedure for determining the _eights that should be applied to the outputs

of the tapped delay line exists (see ref. 20), although Goo_an and

Res_lick used a "cut-and-try tTprocedure in their original _,_ork.

By taking advantage of some of the recent _orl( on system analysis and

signal representation, it seems possible to achieve considerable improve-

ment in the accuracy of measurement of human operator characteristics and

in the sample length required to obtain the estimates of his character-
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istics. Levin, in his work on system analysis (ref. 50), points out that

the model adjustment technique provides estimates of _ystez_ character-

istics that are optimum in the sense that they have minimum variance.

Therefore, these estinmtes can be obtained with specified variance from

shorter sample lengths than with less efficient techniques. His approach

to the measurement problem is an application of the multiple regression

analysis (refs. 21 and 22), and, as such, is an outgrowth of or is closely

related to the work of Levinson (ref. 23), Goodman ana Reswick (ref. 19),

Lee (ref. lO), Gabor (ref. 24), and Knowles et. al. (ref. 23). Huggins

in his work on signal representation (ref. 26) demonstrates the efficiency

of representing a signal by orthonormal functions that resemble the signal

to be represented. In particular, he shows that a particular class of

orthogonalized exponential functions (ref. 27) are especially well suited

for representing the impulse response of many physical systems. The tech-

niques discussed in this report are a synthesis of the model adjustment

(multiple regression) approach to measurement discussed by Levin and others

and employs the orthogonal functions used by Huggins.

This research was supported by the National Aeronautics and Space

Administration under contract NASw-I$5.
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LIST OF SY_0LS

Constant added to mimic to account for non-zero
mean of y(t)

Mimic coefficient

Vector of mimic coefficients

Coefficient of series representation of auto-

correlation function Rxx(t' )

Constants used to orthogonallze exponential functions

Input forcing function signal

Transfer function of test filter

The jth element of g

Second term of Eq. (3.15)

Digital sampling interval
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H(s)

The jth element of

Third term of Eq. (3.15)

Human operator transfer function

7

K Number of filters in mimic

K_ Error reduction factor

L

L--K+l

mj

my
m(t-t')

Covariance matrix with elements ziz j

Covariance matrix of zi and zj for i _ K and
J_K+I

Sample mean of zj(t)

Sample mean of y(t)

Weighting function of mimic

M

M(jm)

nC )

n

N

Number of degrees of freedom of z. in time T
j]1

Transfer function of mimic

Noise signal represonting pilot's remnant

Vector of covarlances of zi(t ) and n(t)

Number of independent samples of residual in time T

Rxx(t')

s

Autocorrelation of x(t)

Complex frequency variable (q + Je)

sh

Sl,S2,...,S K

2
S£

2
Sju

2

Sy

sxx(J )

Syy(j )

Pole of system to be measured

Poles of mimic filters

Sample variance of residual

Sample variance of part of output of jth mimic filter

that is uncorrelated with the other filter outputs

Sample variance of pilot output

Power density spectrum of x(t)

Power density spectrum of y(t)

Power density spectrum of _(t)

t Time

T Length of sample of signals used to compute mimic
coefficients

wj Coefficients of series expansion of system weighting
function



8

w

W_K+l

w(t-t,)

W e

Wju

W(s)

×(t)

y(t)

X

z(t)

zj(t)

ISE

MSD

_j

Ac

_J

a 2
bJls

q2
n

a2
x

_y

_j

 j(t)

 j(s)

Vector of coefficients w. for j < K
j

Vector of weights w. for j • K + 1
0

Weighting function of time-invariant linear system

Weighting function of time-variant linear filter

Equivalent square bandwidth in cps of residual

Equivalent square bandwidth of Zju(t)

Transfer function corresponding to w(t)

Pilot visual input signal

Pilot response signal

Vector of covariances of zi(t ) and y(t)

Mimic output

Output signal of jthmimic filter

Integral-square error

Mean-square difference

Expected value of b.
J

Vector of 8j

Deviation of delay compensation from test filter delay

Residual error signal

Expected value of gj

Vector of Tj

2
Condition variance of bj for a given Sju

2
Expected variance of bj averaged over Sju

Variance of n(t)

Variance of x(t)

Variance of residual

Mean of y(t)

Mean of zj(t)

Impulse response of jth mimic filter

Transfer function of jth mimic filter



If. THE MEASUREME?JT PROBLEI_[

In Fig. 2.1 is n simplified blGck diagram of a flight control system.

The pilot responds to the visual input sIFnal, x(t), by executing move-

ments, y(t), of the control. We are interested _n the dynamic relation-

ship between pilot response y(t) and pilot input x(t). Usually the input

x(t) is random or at least partly random. This is true even _Jhen the input

forcing function is a fixed reference con_mand, since, to a large extent,

the signal x(t) is composed of perturbations of electrical, mechanical or

aerodynamic origin that circulate _ithin the control loop.

Although the human pilot's characteristics are time-varying and non-

linear, we can always represent the relation between his input ant his

output in any control situation by the model of Fig. 2.2: a combination

of a quasi-linear time-lnvariant or time-variant weighting function and

a noise generator (refs. 7 and 9). The vJeighting function accounts for

that portion of pilot output that is lincarly correlated with the input.

The noise generator accounts for that part not linearly correlated _ith

the input, the remnant. For control situations in _Jhich the system dynamics

or input forcing function do not change with time a time-invariant weighting

function will frequently account for almost all of the pilot's response and

the remnant will be small. When the system or input change with time, a

time-variant weighting function is likely to be required to obtain a good

representation for pilot behavior.

The weighting function is called quasi-linear because it approximates

the relation between pilot input and output for only a single control

situation. If the control situation changes (and sometimes even if it

does not), a different weighting function will be required. The measure-

ment problem is to determine the weighting function whose response to the

pilot's input x(t) provides the best match to the pilot's output y(t). For

the purposes of this report, we will consider the best match to be the one

that causes the mean-square difference (MSD) between pilot output and

weighting function response to be minimum. In addition to finding the

weighting function, we want to determine the remnant n(t). These are two

elements of the model of Fig. 2.2.
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Figure 2.1.- Simplified block diagram of flight control system.
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t)

+ y(t)

Figure 2.2.- Representations for human pilot - linear time-

invariant or linear time-variant filter with output

disturbed by noise, n(t).
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The analysis techniqucs discussed in this report can be uscd to

determine both time-invariant and time-variant weighting rcprcscntations

for human pilots in operational and sinmlated flight control situations.

The techniques have obvious application to other problems of analysis of

dynamic systems. Wo leave it to the reader to evaluate the applicability

of the methods presented to other types of measurement problems.
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Iii. DETE_[INATIONOFTiME-INVARIANTCHARACTERISTICS

A. _'_iGHTINGFUNCTION

First, consider the problem of determining a time-invariant weight-
ir_ function for pilot characteristics. For the model of Fig. 2.2, the
relation between pilot input and output can be written in terms of the
convolution integral

y(t) : /t w(t-t') x (t') dt' + n(t) (3.1)

where x(t) is the input to the pilot; y(t) is the output including the

remnant noise n(t); and w(t-t') is the time-lnvariant weighting function

that provides the least mean-square error approximation to pilot charac-

teristics. The weighting function is to be determined from measurements

made on x(t) and y(t).

The weighting function w(t-t') is a representation of pilot charac-

teristics in the time domain. _<e are not limited to a time domain repre-

sentation, but could choose to represent pilot characteristics in some

other domain, such as the frequency domain. In that case, the pilot's

characteristics would be expressed in terms of a transfer function. In

general, we can define a set of orthonoz_T_al functions @i(t) such that

1 for i = j

Io el(t) Cj(t) dt = (3.2)
0 for i _ J

if these functions are complete we can approximate the pilot's weighting

function with vanishingly small mean-square error by an infinite number

of such functions, if this is done the system weighting function can be

_rritten
oo

w(t) = Z wj _j(t) (3.3)
j=l

and the system output becomes

y(t)
J=lZ [wj £ Cj(t-t') x (t') dt'] + n(t) (3.4)
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or

y(t) = z wj zj(t) +n(t) (S.5)
j=l

s ........ on of Eo. (3.4). If the system
where zj(t) is the jth integral in ......... .

weighting function is l_o_m, the coefficients wj can be found by multi-

plying both sides of Eq. (3.3) by Cj(t) and integrating over time. Because

the Cj(t) are orthogonaij

OO

Wj--IO w(t) $i(t) dt (s.6)

Equations (3.4) and (3.5) suggest a method for measurement in _:hich

a set of filters whose weightil_g functions arc equal to the Cj(t) of

Eq. (3.3) are connected in parallel as shown in Fig. 3.1. The input to

the pilot, x(t) is fed to the filters. The filter outputs zj(t) are multi-

plied or weighted by the coefficients b. and then su:m:ed to form z(t). We
J

call this parallel connection of filters a "mimic" and z(t) the output of

the mimic. For practical reasons, only a finite number of filtercj say K,

can be used in the mLmic and the mimic output is

K

z(t) = Z b (t) (3.7)
j=l j zj_

The measurement problem now becomes one of finding the mimic coeffi-

cients that give the least mean-square difforcnce (MSD) between _ti:::ic out-

put and pilot output. It is also interesting to determine the relation

between the mimic coefficients, bj, and the coefficients of the series

representation for the weighting function of Eq. (3.3), wj. Wo azst_o for

simplicity that the mean values of n(t) and n(t) are zero. Therefore, the

mean values of y(t) and of all the filter outputs will be zero. The

coefficients bj are determined so that the _, the MSD bet;_een system out-

put y(t) and mimic output z(t), is a minimum.

The MSD is determined by averaging the square of the difference

between y(t) and z(t) over a period of T seconds' duration.
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The difference or error is

_(t) = y(t) - z(t) = y(t) -

K

Z bj zj(t)
J=l

Its mean-square is

K
1 fT g(t)2dt = _2 = [y(t) - Z

T 0 j=:
bj zj(t)] 2

(3.G)

where the bar indicates that the average with respect to time is to be

taken. The values of the coefficients b. that minimize the MSD can be
3

found by taking the derivative of :2 in Eq. (3.8) with respect to each bj

and setting the results equal to zero. Doing this, a set of K equations

are obtained.

ZlZ 1 bI + ZlZ 2 b2 +...zlz K bK = Zly

z2z I bI + _2z2 b2 +...z2z K bK = z2y

(3.9)

ZKZ 1 bI + ZKZ 2 b 2 +...ZKZ K bK = zKy

where ziz j is the sample covariance of zi and z_o for the period T and ziy

is the sample covariance of z i and y for the same period.

Note that since it was assumed that the expected values of input x(t)

and noise n(t) were zero, the expected value of zi, zj and y(t) will be zero.

If the expected values of x(t) and n(t) were not zero, or were unknown, an-

other equation would be required in the set of Eq. (3.9) and a constant would

have to be added to the output of the mimic. The additional equation would

be
K

a = my - j=IZ bj mj (3.10)

where my is the sample mean of y(t) and mj is the sample mean of zj(t).

The covariances in Eq. (3.9) would have to be taken about these mean values

and would be of the form

(zi - mi)(z j - mj) (3.11)
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In the remaindcr of this rcport _.;eassumethat x(t) and n(t) have
zero mean. The rcsults obtained can bc cxtendcd to thc case in which the
meansare not zcro by substituting cxpressions like the one in Eq. (3.11)
for the covariances in Eq. (3.9).

In matrix notation Eq. (3.9) is written

(3.12)

where L is the K by K covariance matrix with the elements zizj; b is the L b

colun_n matrix of coefficients b j; and _ is the column matrix with elements
-- If the mimic filters are choscn well, thc weighting function of the
ziY.

mimic will be very nearly equal to that of the system, and

K

w(t) _ _ b _j(t) (3.i3)
j=l J

Since the mimic filters have kno_ characteristics, the system weighting

function can be determined, at least approximately, from Eq. (3.13) once

the mimic coefficients have becn computed. However, thc bj in Zq. (3.13)

will not necessarily be equal to the wj in Eq. (3.3). The b_'sj are the

coefficients of a finite series approximation to the pilot and are, in

addition, subject to random variations resulting from the noisc n(t),

whereas the wj's are the coefficients of an infinite series approximation

to the pilot's actual weighting function.

The values of the mimic coefficients that will be obtained in an

actual measurement can be found by using Eq. (3.5) to expand _ on the

right side of Eq. (3.12). _'_en this is done, the following matrix equation

is obtained:

L b = L w + _K+l _K+I + a (3.14)

where w is the column matrix whose elements are the first K coefficients

wj of Eq. (3.3); _K+l is the column matrix whose elements are the __c°effi-

clents wj for J _ K + l; _K+l is the matrix of sample covariances zlz j for

i _ K and J • K + l; n is the column matrix whose elements are the sample
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covarlances of filter output zi(t) for i _ K and noise n(t)

The solution to Eq. (3.14) is:

b_= ___+ n -_ L_+1 _K+_ + _-l n (3.15)

or

b : _._J+ g + _h (3.16)

where _ and _ are column matrices whose elements gj and hj are determined

by the second and third terms on the right side of-Eq. (3]15).

Thus, each mimic coefficient b. is the sum of three components: the
J

corresponding weight wj of the expansion of system weighting function in

terms of an infinite sum of orthonormal functions, Eq. (3.3); a bias gj

caused by approximating the system _;ith a finite number of mimic filters;

and a noise term hi. Since the noise is uncorrelated with the input or with

any of the mimic filter outputs, the expected value of h will be zero and

= _'_ + X (3.17)

where _ is a column matrix whose elements Bj are the expected values of

the mimic coefficients and 7j are the expected values of gj.

For the special cases in which the input is _._hite gaussian noise or an

impulse, the expected covariance of one filter output with all other filter

outputs will be zero (the filtcrs have impulse responses that are orthogonal),

and the expected value of _K+l will be zero. In this case _ will be zero,

_j will equal wj, and there will be no bias.

If the system can be represented exactly by a mimic composed of K

filters, wj for J _ K + 1 will be zero, and therefore _ will be zero. The

mimic coefficients will be unbiased and _]'will_ equal wj. This will be

true for all input signals.
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B. DETEP_INATION OF CORRELATION FU_TCTIONS AND POt._ZRSPECTRA

An autocorrclation or a cross-correlation function of two signals

can be approximated by a linear combination of filter impulse response

functions in much the same way as was the quasi-llnear impulse response

of the pilot (ref. 28). That is, the autocorrelation of the input signal

x(t),

K

Rxx(t. ) _ z cj ,j(_') for t, • o
j=l (3.1_)

where the C j(t') are the impulse responses of the mimic filtcrs and the

cj are the weights applied to each Oj(t').

If the Cj(t') form a complete set of functions, the corrc!atior.

function Rxx(t' ) can bc approximated with vanishing!y small mcan-sqL_arc

error if K in Eq. (3.18) is allowed to go to infinity. We w_i!l azsu.uc

that the _j(t') arc complete and orthonormal in the following discussion.

• " n

An expression for the cj's can be obtained by mul_iply! g both sides

of Eq. (3.18) by ¢j(t') and integrating the product over all valucs of t'

from zero to infinity. Because the functions are orthonormal, the only

term of the summation that does not integrate to zero is the ith term and

ci = _ Rxx(t') _i(t') dt' (3.19)
o

Equation (3.19) can be used to determine the weights of Eq. (3.18)

if the autocorrelation function is 1_own. Equation (3.18) can be used to

compute the correlation function if the weights are kno_o

If thc correlation function is not _own, the weights canbe computed

directly from the signal x(t) by using a method developed by Lampard

(ref. 29). A set of mimic filters are excited by the signal x(t), and the

filter outputs are multiplied by x(t). The average values of the result-

ing products are the desired weights. The output of the ith filter is

zl(t,) = I_ x(t-t,_ ei(t,) at, (3.20)
o
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By muitiplyir_ both sides by x(t) and avcraging, _.Icobtain

IT /T x(t) zi(t ) dt = /_ ITl- /T x(t) }:(t-t') dr] ¢i(t') dr' (3.21)
O O O

The average value of x(t) x(t-t'), the second integral, is the auto-

correlation function Rxx (t') and

xz-- = F x(t)zi(t)dto o Rxx(t') _i(t ) dt' (3.22)

The integral on the right is identical with that in Eq. (3.19) and, thus,

ci ffiXZi = 1 /T x(t) zi(t) dt
o

(3.23)

Once the weights cj are determ._.ined, Eq. (3.15) can be used to compute

the autocorrelation function R x(t' ). Since the power density spectrum of

x(t), Sxo_(j_),is the Fourier transform of the autocorrclation function

Rxx(t,)(ref.14),
K

SXX (J_o) _ Z cj Cj (.ja_) (3.24)
J=l

where Cj(jc_) is the Fourier transform of Cj(t').

Cross-correlation functions of two signals can also be obtained using

this method. One of the signals is used as the input to thc mimic filter

and the other is used as the multiplier of filter outputs.

C. DETERMINATION OF R_4NANT

In general, the mimic will not account for all of the output of thc

system. The part not accounted for, the residual c(t), is the difference

between the system output y(t) and the mimic output z(t). The residual

has two components: one results from the pilot's remnant n(t) and the other

from imperfect approximation of the pilot's weighting function, w(t-t').

If the pilot's weighting function is approximated with very littlc error,

the residual will be almost entirely composed of the pilot's remnant.
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If we carry out the squarir_ operation indicated in Eq. (3.$) and
note _hat

K K K
Z b. £ b. z zj = Z b.

J=l J I=i _ J _ J=l J zjy (3.25)

we obtain for the following expression for the mean-squareor variance
of the residual

K
2_ z _ (o.2S)

s¢2 = e2 = Sy j=l zjy

O Fwhere s 2 is the variance of y(t), i.e., y(t) 2 Equation (3._o) ca:: be
Y

used to determine the mean-square error of approximation to pilot charac-

S¢2,teristics, once the mimic coefficients and covariances ziy have been

computed. If the mimic is a good approximation to pilot weighting function,

most of the residual will result from pilot remnant n(t).

The power spectrum of the residual can be computed in two ways. If

the mimic transfer function is 14(j_) and the input and output powcr spcctra,

Sz_x(jO ) and Syy(j_), have been determincd, the residual spectrum can be

determined from the relation

The second term on the right is the power spectrum of the output of the

mimic. The difference bctween it and the power spectrum of thc pilot's

output is the power spectrum of the residual.

_,fnenEq. (3.27) Is used to determine the residual spectrum, errors

in approximating Sxx and Syy will rcsult in crrors in S¢¢. A morc

accurate method for determining the residual spectrum is actually to

obtain the residual signal ¢(t) as sho_._ in Fig. 3.1. Once the mimic

coefficients have been detcrmined, the input signal x(t) can be fed to

the mimic a second time, and the mimic output z(t) obtained. By subtract-

inS z(t) from pilot output y(t), the residual signal ¢(t) is found. The

power spectrum S¢¢(J_) is computed from c(t) using the method discussed

in the previous section. Sincc ¢(t) consists largely of components of

pilot's response that are not ¢Inearly correlated with pilot input,

analysis of this signal may be useful for identification of nonlinear-

ities in pilot characteristics.



21

iV. STATISTICALPROPEiTIESOFI,_i}iiC COEFFICIENTS

A. DISTRIBUTIONOFMIMIC COEFFiCiEIJTS

The mimic coefficients are partial regression coefficients or pilot

output y(t) on each of the filter outputs zj(t). It is sho'.Jnin standard
statistical texts (refs. 21 and 22) that if the residual c(t) is no'_-,uaily
distributed_ the mimic coefficients b. _,Jill be normally distributed The
expected value of bj is given by Eq. 13.17). The variance of bj i_

2
6 E

Var [b,] - (4.1)
Ns 2

ju

2
where _e is the expected value of the variance of the residual cry.or;

N is the number of independent samples of ti_e residual used in the co: Dura-

tion of bj. Note that N must be greater than K for Eq (4.1) to ..a'.:cccn_c_

since at least K samples are needed to solve _niquely the K simultai'.cous
2

equations required to determine the b_. Sju is the sample variance of the
th

part of the output of the j filto:_, that is uncorrelated with the other

K-I filter outputs and is equal to the jth term on the diagonal of the
---1

inverse of the covariance matrix, _,

The variance of b: depends upon the value of the variance s2. obtained

in a particular measurement of b:. The mean of b_ is independent of s7

2 , _ jU
and is equal to pj. For each value of Sju b.. has a different nor;,.aiJ
distribution. Therefore, the probability density of b. is conditional

2on s. and is dcnoted2P[bjls2ju . ju ]. p[bjls ] ms the conditional probability

density of bj given Sju. Similarly, the variance of bj is conditional

2 and is denoted G_ is. Using this notation, Eq. (4.1) may bc writtenon °ju' oJ

2

° 2 _e
bjls - Z- (4.2)

N Sju

The expected variance of b_ can be obtained by averaging dbjls in

Eg. (4.2) over all values of s_. Thus, bj is distributed with mean _j
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and variance a 2
bJ given by

or

N '°T

2

_2 _
=_ E[i/S2u]

bj N

(_.3)

i/s 2 s2
where E[i/Sj2u ] is the expected value of - ju and p[ ju ] is the probability

density of s2
ju"

Denote the part of the output of the jth filter that is uncorrclatcd

with the other mimic filter outputs by Zju(t ) and its variance by _2ju

Zju(t ) is the part of zj(t) that remains after the best linear combination

of the other K-1 filter outputs is subtracted from zj(t). Assume that
2

during the T-second long sample used to compute Sju, there are M independent

samples of Zju(t ). If the system input is normally distributed with mean

zero, the filter outputs will be normally distributed with mean zero and

the quantity

_:S_u_ x2 (z_.4)

ju

will have approximately a X 2 distribution with [M-(K+I)] degrees of

freedom. K-1 degrees of freedom are lost in the computation of the part

of z_(t) that is uncorrelated with the other filter outputs. Equation

(4.35 can be rewritten in terms of X 2 by using Eq. (4.4).

_2 cc2M _ i

Carryir_ out the integration indicated in Eq. (4.5), we obtain

2

a2 g¢ ;4-- _ for M :" K + 1 (J4.6)

bj 1)]
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Equation (4.6) is not a good approximation to G2j when M is nearly equal

to or less than K+I. For M is this rangc the X_ assumption is not accuratc.

Equation (It.l) gives the variance of the mimic cocfflcier.t when a

particular value of s 2. is obtained in a _,ca_ure;ncn_.-,- _ The mi::.ic coeffi-
ju

cients will bc normally distributed with this variancc if the rcsidua! _(t)

is normal. Thc pilot's input and output need not bc normal for the mimic

coefficients to bc normal. Ho_,:cver, in Eq. (4.6) o2bj' thc variance averaged
over all values of 2

_ju' was dcrived under azs,uu:,ption that the input and out-

put were normal. In the event the residual is not normal, thc rcsults

obtained in this section will not bc strictly correct. If thc dcviation

from normality is not too great, thezc results should still providc good

estimate of the statistical properties of the mimic coefficient.

B. CONFIDENCE LI_TS FOR MIMiC COEFFICIENTS

The results above can be used (i) to placu confidence limits on f,!,

ti_e expected value of the mimic cocfficicnts, once the sample mimic coeffi-

cients bj have been obtained or (2) to test the significance of diffcz'ences
between two values of b.. _fc consider t_:o measurement situations: those in

J

which ac, the standard deviation of the residual error, is l_znown and ti_ose

in which cc must be estimatcd. The usual assumptions of normality of

system and mimic outputs are made.

If oc is Imo_.m, the variance of any measured value of bj can be com-
puted from Eq. (_ 2) The conditional variance _2 is used rather than

• • bJls
the expected variance a2
2 bj of Eq. (4.6), since in any mcasuremcnt of bj,

s is specified and can be determined from the covariance matrix L.
3u

Eq. (4.2) requires ]mo_.z!edge of N, the number of degrees of freedom of the

residual c(t). The "sampliilg theorem" can be used to obtain a rough

estimate of N (ref. 30). If c(t) is limited to a band_idth _,Ic cycles per

second, 21,IE independent samples per second are required to specify c(t),

and 2_¢T degrees of freedom are obtained in T seconds. If, as is usually

the case, ¢(t) is not limited to a bandwidth Wg cycles per second, the



sampling theorem is not strictly applicable. Nonetheless, it is still

useful for obtaining an estimate of N. To obtain such an estin.a_c,_-'-__hc

equivalent square bandwidth of ¢(t) is used for W_ in the ex])rezs]c_n for

degrees of freedom. The equivalent square bandwidth of a low-pass signal

is the bandwidth of a signal whose spectrum is rectangular with a magnitude

equal to the peak of the spectrum of the original signal and wiDh a band-

width such that the energies of the two signals are the same. if the spec-

trum of _(t) cuts off sharply, the equivalent square bandwidth app_'cxi_nation

will be reasonably good. If it falls off gradually, the equivalent square

bandwidth estimate will be in error, but still close enough to be useful.

For example, for white noise filtered by a single low-pass RC filter, the

estimate that N = 2WeT is low by a factor of approximately_/2-(ref. 31).

Estimates of M in Eq. (4.6) can be obtained using thc_e same approximations.

Once qbjjs and bj are computed, we can determine from tables of the

normal distribution the probability that _j lies within certain confidence

limits. If two measurements of bj are made from different samples of the

signals _bjls can be used to determine whethcr or not there is any sig-

nificant difference between the coefficients. For example, if the expected

values of the mimic coefficient _j are the same for the two measurements,

the probability is .95 that

< 2 a2 (4.7)bj2 -bjl _ 2  /%jlsl + bJls2

where bjl and bj2 are the first and second measurements of a coefficient

and the term on the right is the square root of the sum of the variances

bjl and bj2 (ref. 21).

In most measurement situations, _¢ is not known and the sample standard

deviation s¢ must be used. It can be computed from Eq. (3.26). It can be

shown that the quantity

t = - K3Z _ (bj (4.S 
$ c

has a Student's distribution with N-K degrees of freedom (ref. 21).

Equation (4.8) involves only quantities that can be measured from samples
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of the :_ "'__np_ and output signals ar.d does r.oZ require _nowlcdge of

population characteristics. From tables of the Studcntts diztrlbutloz,

cne can determine the probability that _ lies outside prezcribed
confidence limits.
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V. _,_ASURE_._EN_fOFLINEARTI_-VARYiNG SYSTEMS

A. PJZPRESENTATIONOFTIME-VARYiNGSYSTEMS

The regression analysi_ tech_%lque can be used to determine the

characteristics of time-varying systems provided the system to be measured

does not change its characteristics too rapidly. The mimic coefficients

are permitted to be functions of time to account for variation in system

charactcristics. Time-varylng mimic cocfficients are determined from

Eq. (3.12), the s_me equation that is used to find the cocfficients for

tiz_e-invariant linear systems. However, to measure the variations in

system characteristics, the coefficients must be determined from samplcs

of the system and mimic filtcr output signals that are short compared to

the length of time required for the system to change its charactcristics.

That is, during the T-second long sample used to compute thc covarianccs

of Eq. (3.12) the system must not have changed its characteristics

significantly, if it has changed characteristics, the mimic will approxi-

mate the average characteristics of the system over the T-second long

sample period.

The characteristics of a time-varying linear system, like that in

Fig. 2.2, whose output is disturbed by noise can be rcpresentcd by a time-

varying weighting function. The output y(t) of such a system is related

to the input x(_) by the convolution integral,

y(t) = _t w(t,t-t') x(t') dt' @ n(t) (5.1)

The function w(t,t-t,) is the system weighting function at time t and is

the contribution that an impulse occurring at time t' would make to the

output at time t (ref. 32).

_ now show that a mimic whose coefficients are functions of _ime can

approximate a time-varying system. Let the mimic be composed of filters

whose impulse responses form a complete orthonormal set. At any timc t

the weighting function of a time-varying systcm, w(t,t-t'), can bc approxi-

mated with vanishlngly small mean-square error by an infinite number of
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these filters. Thus, the system weighti_ function is

O0

w(t,t-t') : Z
j=l

and the system output is

wj(t) Cj(t-t')

(5.2)

CO

y(t) = Z wj(t) zj(t)+ n(t)
j=l

where wj(t) is the weight applied at time t to the jth filter, in Eq. (5.2),

the time-varying weighting function has been partitioned into a set of

tlme-invariant filters and a set of time-varlant coefficients wj(t) that

weight the output of these filters.

Equations (5.2) are series expressions for the system weighti:_

function and _ys-_cm output when an _n_in±_e_ number of orthonormal filters

is used to approximate the system, bhen a finite number of filters is

used in the mimic, the tlme-varying mimic coefficients bj(t) will not, in

general, equal the wj(t) in Eq. (5.2).

If we assume that the system remains invariant during the time T

required to measure the mimic coefficients, then the results obtained for

time-invariant systems still apply. In particular, Eqs. (3.15) and (3.16)

apply if we replace the time-invariant coefficients by time-varyln_

coefficients,

_(t) = _(t) + L_-I _K+i _K+I (t) + _-i

and (5.3)

_(t) : _(t) + _(t) +

These equations relate the coefficients bj(t) of a finite mimic to

the coefficients wj(t) of an infinite series approximation to the time-

varyi,_z system.
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B. SAMPLELENGTHREQUIREN]ENTS

The crucial factor that determines the usefulness of the mimicklr_
technique for measurementof tlme-varyir_ systems is the length of the
8mmpleT that is required to obtain measurementsof the mimic coeffi-
cients that have sufficiently small var!ancc. If the coefficients can
be determined wlth small variance from a short sample, the n:ethod will

be highly useful. If a long sample is requircd, its usefulness is limited.

To determine how long a sample length T is required, _.lemust first

decide _.Jhatconfidence limits arc dcslrcd, that is, _:e z_st spcc!fy the
2

required value of _bj" Given a value of _22 bj the sample !cr_th T required

to achieve the desired Obj can be dctcrm!ned. From Eq. (4.6) _.;esee that
the variance o2

bJ depends directly upon the ratio _._[M-(K+I)]. If M Is

much larger than K + l, this ratio w!ll be approximately unity and the

variance can be approximated by the relation

2
G£

bJ N G2uj (5.4)

If we use the sampling theorem to relate N, the number of degrees of

freedom, to T, the sample length, the following relation for T !s obtained.

2
oC

(5.5)
2W¢ ju bj

If M is not large compared to E + !, Eq. (4.6) cannot be simolified, and

the follo1._nG expression for the variance must be used to determine T

(usin_ the sampling theorem).

2

o 2WjuT
(5.6)

bj 2W T o2 [2 Jjum,(1(+l)]ju

where Wju i_ the effective square bandwidth of Zju(t ).

The quantities We Wju, o¢ 2 and o2' Ju must either be kno_,m or estimated

to determine T. in some cases, theme quantities can be computed from
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theoretical considerations alone, in other2 canes, Dreli_;inar_" measure-

ments of system charactcristics can bc r_adc from _,:hlch thczc quantities

can be estimated. Since the prescnt objective is just to csti_Tate the

sample ler4zth T required to measure Dhe bj with givcn co.nfidcnce limits

and not to perform a statistical test of the significance of a particular

measurcn:ent of the mimic, it is sufficient to use approximate valuez for

the quantities upon which T doponds.
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Vi. SELECTION OF MIMIC FILTERS

A. GENERAL CONSIDERATIONS

The mimic can be constructed of any of a large number of different

types of filters including a set of narrow band-pass filters, a set of

time delays (a tapped delay line) or a set of low-pass filters with real

poles (simple exponential filters). The only constraint we shall impose

on the choice of filters is" that the filter impulse responses should be

orthonormal. This restriction is imposed principally to simplify analysis

of mimic capabilities and is not a necessary restriction.

The basic problem in measurement of time-varylng systems is to obtain

from short saz_les of data mimic coefficients that have small variance.

The variance of the mimic coefficients depcnds upon the characteristics

of the filters used in the mimic in a number of ways. By choosing the

filters properly, the variance can bc reduced, or, a!tcrnatively, the

sample length required to achieve some specific variance can be shortened.

The mimia filters should be chosen so that the mimic accounts for

almost all of that part of the system output that is linearly correlated
2

with the input. By doing this, the residual variance ee _._illbe reduced,

thereby reducing 6 2
bJ" The filters also should be selected so that a few

filters account for almost all of the system output. These new filters

_ill have coefficients that will be large and the relative variability

of the cocfflcicnts,_ _bj/b_,j will be small. Finally, since q2bj dcpcnds

inversely upon q_u and directly upon the ratiol M/[M-(K+I)], it is desirable

to choose the filters so that their outputs are as nearly independent as

possible (to make e2
ju large) and so that M the number of degrees of frecdom

in the uncorrelated part of the filter output, is large compared to K + 1

(to make M/[M-(K+l)] approach one). M can be made large by choosing

filters of wide bandwidth whose outputs are uncorrelated. If a small number

of filters is used, K will be small and it will be easier to achieve a

ratio M/[M-(K+l)] that approaches unity.
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From the point of view of convenience and habit, perhaps the n_.ost
natural choice of filters for the z_i_uicis a sot of narrow bandpasz
filters. The outputs of such a set of filters are approximatc!y orthogonal
for al] inputs (provided T is large) and the mimic coefficients are the
real and imaginary parts of the transfer function of the system being
measured. But, a very large numberof narrow band filtcrs is required to
represent typical systems with small residual variance and the numberof
degrees of freedom M of each filter output will, in gcncral, bc small. As

a result, a large Obj is to be cxpcctcd whennarrow band filters are used.
Onemight think that because the ou_puts of narrow1band filters are orth-
ogonal, that the covariancc matrix of Eqs. (3.9) and (5.12) would reduce

to a diagonal matrix and solution for thc mimic coefficicnts would be simple.

This advantage is not obtained if short samples of signals are uscd to

cor_.pute mimic coefficients. :;ith short sar.plcs the off-diagonal tc_ms of

the sample covariance matrix _ill not, in general, be zero, and the full

matrix equa_ion must be solved.

B. A CLASS OF 0RTHONOP_iAL FUNCTIONS

To achieve a good representation with a small number of filters, it

is necessary to choose filters whose impulse resF.onscs resemble that of

the system being measured. In most control situations, it appears that

the linear part of human pilot characteristics can be approximated by

transfer functions consisting of a delay, one to two lags, and frequently

a lead, i.e.,

H(s) K(s + sh ) e- S (6.1)

(s + Shl)(S+ sh2)

The poles and zeroes of approximations to pilot transfer functions are

almost always found to be real or located very close to the real axis.

Thus, a reasonable choice of filtcrs for use in a mimic would be a

set of low-pass filters with real poles. These filters would have to be

orthogonalized, but that is not difficult to accomplish.
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Kautz (rcf. 27) and Huggins (rcf. 26) discuss a class of ortb.onor:::ml
filters that has a numberof advantases and that wc have found to bc
particularly u_e_ul. Sets of orthonorma! filters belonging to th=s class
are constructed from filters whoseimpulse responses are simple exponen-

-slttial functions, e , and whosetransfer functions are of thc form

ll(s + Sl).

The Kautz procedure for ortho_onalizin_ a set of exponentials is the
following. If the first orthonormal function is a single cxponcntial (it
could be a sumof exponentials) with a_pole at s = -s I, it will havc the
transfer function

®l(S) =_: (6.2)

s+s l

If the second orthonormal function, ¢2(s), is to contain a pole a_ s = -s 2,

it can be shown that ¢2(s) will be oz.thogonal to el(S) if it has the

transfer function

(s - Sl) (6.3)

®2(s) = (s + Sl)(S + s 2)

Vie can continue in this way, making cach function have the poles of eke

previous function and zeroes that arc thc ncgativcs of thcse poles, and

obtain an orthonormal set composcd of as many functions as wc want. The

general form for the ith orthonormal function of this class is:

(s - Sl)(S - s2)...(s- si_l)
¢i(s)

+ si)(s + s2)...(s + si)

C. POLE-ZER0 LOCATI0}$S

We would expect, intuitively, that an orthonormal sct of functions

whose poles were locatcd close to the polcs of tl_e systcm being measured

would provide a good approximation to that system, with only a small number

of filters being required. However, in advance of measurement, the
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location of the poles and zeroes of the system being measured ix known

only approximately. The problem is to select the poles and zeroes of the

orthonorma! set of function so that the error in approximation remalns small

for the entire set of likely pole-zero configurations of the system or of

the pilot.

Consider the problem of measuring a system whose transfer function

is of the form

F(s) = v ,_ (c.5)
s + sh

%.;here the location of the pole sh is not well knovn_. Assume Chat tl:e input

is white noise of unit variance and that a set of orthonormal functions of

the form of Eq. (6.4) is used to measure F(s).

it can be shown that for white noise inputs the expected moan-square

error in approximating the system, the residual variance, is

a2 (l - sh/sl)2(1- sh/sl)2...(l- sh/s1_)2= (6.6)
(1 + Sh/Sl)2(1 + sSsl)2...(l + _h/s;() _

where -Sl,-S 2, ...-s K are the locations of the poles of the orthonormal

filters of the mimic (ref. 33).

the error variance by the factor

K C

Each filter added to the mimic reduces

(2 - sh/si )2

{l + Sh/Si)2

(6.7)

In Fig. 6.I K e is plotted versus Sh/S i. If any of the poles of the

mimic filters coincide with the pole of the system, _c 2 goes to zero. To

insure that a certain maximum error is not exceeded when sh varies over a

wide range (particularly since we actually do not know the location of s h

in advance of measurement), the poles of the mimic filters should be spaced



uniformly on a logarithmic scale.* That is, the poles should havc the

following values:

(-s_,-ksl, -k2sl,...,-kK-lsl)

With this choice of poles, if shis between sI and sK, Eq. (6.6) will

contain at least one term of the form of Eq. (6.7), that is, _ will be

less than

(1-  17)2 (6.s)
Kcmax =

(1 + j- )2

The residual variance 0¢ 2 from the two poles adjacent to sh will be

less than or equal to K 2 Since K c is always less than one the other
C_aX"

filters will reduce the error further. Therefore K2 is the maximum
• 6max

_c 2 that will occur.

For example, if it were desired to achieve a residual error variance

of less than one per cent of the variance of the system output, the poles

of the mimic could be chosen as follows:

(-Sl,-4Sl,-16Sl,...,-4(K-1)sl)

As Ions as sh was located between sI and sK (where sK = 4(K-l_sl ), the

ratio Sh/S i would never be greater than two nor less than one-half. If the

sh were located at the geometric mean of two analysis filter poles, the

error would be maximum. From Fig. 6.1 we see that for the cases sh = 2s i

or si/2, if the two poles adjacent to sh were the only poles of the mimic,

the error would be (0.11) 2 The next two nearest poles would reduce the

error by a factor of (0.6) _ and the _c 2 from the four filters would be less

than 0.5 per cent.

It should be noted that a set of filters whose poles are spaced uni-
formly on a logarithmic scale is not complete. However, for most
practical problems, we are more interested in obtaining a good approxi-
mation with a small number of filters than in having the assurance that
we can achieve very small error with a very large number of filters.
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If the system transfer function is of the form

(s+ )
F(s) = sh3 (6.9)

(s + )(s + )
Sh I Sh 2

it can be expanded as a sum of two terms of the form of Eq. (6.5), each

with a single pole. Figure 6.1 can be used to estimate the residual

error variance in approximating each of these transfer functions separ-

ately. By making appropriate corrections for the scale factor associated

with each component of the transfer function, an upper bound to the error

in representing the composite transfer function can be obtained.

The upper bound is

_ + (6.1o)
< _Cl _c 2

where Gel and _2 are the expected standard deviations of the errors in

approximating the first and second components of F(s) of Eq. (6.9).

It is apparent from the precedins analysis that a large class of

systems can be approximated accurately by mimics composed of a small

number of filters (about 4 or 5), provided some care is exercised in

locating the poles and zeroes of these filters. The locations of the

poles and zeroes are not critical and they can be widely spaced. Wide

spacing is an advantage, since it allows good approximations for a broad

range of system pole locations. It is also apparent that to obtain as

accurate an approximation to low-pass systems with a mimic composed of

narrow band filters or time delays would require a much larger filter set

than four or five.

The results presented above are useful in that they provide guides

for selecting mimic filters. In the usual measurement situation, in which

the locations of the poles and zeroes are not known, one cannot use the

relations derived in this section to compute the error in approximation.

Rather, Eq. (3.26), which involves only quantities derived from the actual
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system or pilot inpu_ and output, should be used to compute the error.

It should be noted, however, that it is not possible, even after a measure-

ment has been made, to determine what part of the residual error is caused

by imperfect approximation to the system's or pilot's transfer function and

what part is caused by noise (or resonant) added to the output. One can

only attempt to reduce the size of the part of the residual caused by Im-

perfect approximation to a very small quantity by judicious choice of

mimic filters. Fortunately, it does not appear to be too difficult to

obtain filters that will provide rather accurate approximations to a wide

variety of systems. A few trials with different filter sets should lead

very rapidly to a satisfactory set.

D. COMPENSATION FOR TIME DELAY

%_en a small nun_er of orthogonalized exponential filters are used

in the mimic, systems that have a time delay term, e-as, in their transfer

functions may not be mimicked accurately. If the delay c is not very much

smaller than the time constants of the system, significant errors in

approximation will result. These errors can be reduced by using a larger

n_mber of filters in the mimic. A more efficient procedure is to compen-

sate for the delay by adding a delay to the mimic so that the mimic filters

do not have to reproduce the delay compenent.

One way of compensating for time delay is to delay the input to the

mimic by T seconds and the pilot's output by T, _ - _, T - 26, T - 38 .... ,

T - n8 seconds. This procedure, in effect, gives several pilot outputs

each advanced with respect to the input by a certain number of seconds, 0,

5, 25, 35, .... nS. Each of the advanced outputs can be used to compute the

covariances zly. In this way, several covariance vectors Z Eq. (3.12),

one for each value of delay compensation, are obtained. Eq. (3.12) can be

solved for each Z and a set of mimic coefficients can be obtained for each

delay compensation. The delay compensation that yields the mimic coeffi-

cients that provide the least mean-scuare error approximation to the pilot's

output can be taken to be the approximate delay of the pilot. This delay

plus the corresponding mimic coefficients constitute the mimic parameters

that best approximate pilot characteristics.
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Delay compensation performed in the mannerdescribed does noC result
in a great increase in amount of computation. Only one covarlancc matrix

(Eq. (3.12)) has to be computed. Onceits inverse is determined, it is
relatively easy to solve for the several sets of mimic coefficients
corresponding to the several _.
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VII. EXPEHiY_£ALEVALUATION

Programs tO perform all the mathematical operations required by the

analysis technique wcrc written for the PDP-IB digital computer (ref. 34);

Thil is a medium size, high speed (% microsecond memory access time),

stored program machine. The programs were used to confirm the theoretical

developments discussed in this paper. The programs are discussed in detail

in the Appendix

A. M_ASUREMENTS OF VARIANCE OF MIMIC COEFFICIENTS

A single pole (digitally simulated) test filter of the form I/(s+s h)

was analyzed using the computer programs. The pole of the test filter was

located at s = -1.O (sh = 1). The filter was analyzed by a mimic composed

of five filters of the form of Eq. (6.4). All five poles of the mimic

filters were located at s = -1.O (si = i). Although a single filter of

this kind would match the test filter exactly, a mimic composed of five

filters _._s used to simulate more closely the situation likely to be en-

countered in an actual measurement problem.

The input signal x(t) was digitally simulated white noisej a serie_ of

statistically independent pulses with approximately normal amplitude dis-

tribution. A pulse occurred every 0.1 second. Impulsive noise of the sa_c

type was added to the output of the filter. Except for this noise, the

mimic could account for all of the output of the filter, and the variance of

_e 2 2the residual error was equal to the variance of the noise dn

In Fig. 7.i are shown values of Obl obtained from successive measure-

ments of b I plotted against the normalized sample length, Ts I, the sample

length times the first mimic filter bandwidth. Between 50 and 150 samples

of b I were used to determine abl, the larger number of samples being used

when the normalized sample length Ts I was small. Most of the values of _bl

sho_.m in Fig. 7.1 are for the case in which the ratio of the standard

deviation of the residual to that of the uncorrelated filter output, cC/_lu,

was equal to 0.41.
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For values of Ts I _reater than I0, _bl decreases inversely wlth_F6_.

This is to be cxpectcd from Eq. (5.f_) sincc for a sinclc io:.J-pazs filter

the equivalent square bandwidth of the mimic _te_ outout, Wlu, is equal

to Sl/4 ana 2WjuT in Eq. (5.4) is equal to TSl/2 For Ts ! r.:uchgreater than

lO this quantity will be greater than K+l, and from Eq. (5.6).

G, GC GC
(7.l)

v QT

For Ts I less than ten, Obl increascs more rapidly than 1/_. A_-_ar-

ently 2WIuT (or Tsi/2) is suff!clcntly sr.all so that thc dcnomlnator term

[2WjuT-(_[+!)] dominates thc bchavlor of Eq. (5.6). Ho_.Jcver, Obl does not

tend to infinity as T decreases to very small values as would be predicted

from Eq. (5.6). The reason probably lies in the inaccuracy of the azsu:up-

tio_s that the filter outputs have a X 2 distribution and that the 3ampii_-_

theorem gives the number of degrccs of freedom.

Also sho_n_ for Ts I equal to tcr_ are valucs of Obl obtained whcn thc

ra_io oe/Olu is increased and decreased by a factor of two fro;:, ti:c value

in Eq. (7.1). Values for Obl appro:_imatciy twice as large ar.d half aa large

as the central value of Obl wcrc obtai.ned. This agrees with Ec. (5.6).

B. _.iEASURE_.ZENTOF T!r,LE-I_/ARiA_T FiLTEP_

A number of digitally simulated test filters _,ze.rc analyzed with a set

of five mi_.uic filters of the form of Eq. (6.4) whose poles werc located at

s =-.055, -.167, -0.5, -1.5, -4.5. The impulse responses of these fiitcrs

are in Fig. 7.2. This sot of mimic fii_ers was chosen becausc its poles

are logarithmically spaced, thcy span a wide rar4ze_ and yet are not too far

apart. The discussion in Section Vl indicates that such a set of mimic

• __er_ should be capable of measuring a wide range of systems with rc!ativc-

ly small error.

Several input signals were used including an impulse, impulsive noise,

and impulsive noise filtered by 1/(s + 5.0). The filtered noise input is
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similar to the pilot input in many control situations. Ti_e measurements were

made both with and without impulsive noise added to the test filter output

(to simulate pilot remnant). A sample length T of 4 8 seconds was used in all

measurements. The integral-square error (ISE) in the impulse response

relative to the integral-square of the i_npulse response was con_putcd. _.ere

applicable, the relative ISE in the response to an impulse fiiCered by

I/(s + 5.0) was also computed. It should be noted that when an IF.pulse is

used as the input for measurcment purposes, thc mir._ic coefficients obtaincd

should be the cxpected values of the mimic coefficicnts, _j, and the measured
2

ISE should be the expected value of the residual variance, a c

The poles and zeroes of the digital test filtcrs wcrc located as shown

in Fig. 7.3. Also sho_.nq in the figure are the locations of the po3es of the

mimic filters. Four of the test filter polcs _.:cre located r.idway o._ a

logarithmic scale bct_leen the two adjacent mimic filtcr poles. For one-pole

test filters, at least, the error should be greater _'hcn the test filter

pole is r.lidway between the adjacent analysis filtcr poles than whe_.t it is

closer to one of the poles than to the other. Thc test filtcr pole at

s = -0.5 coincides with one of the r..imic filter polcs and, thcrefore_ the

one-pole test filter with this pole should bc mimic'.:ed with no crror. Two

of the one-pole test filter poles were located outside the range spanned

by the mimic poles, l,lewould expect the error to be greatest for these two

test filters. The transfer functions of the t:_o-pole and the t:;o-pole and

one-zero test filters are similar to those of hun_an pilots in r,any control

situations.

I. _.leasurement Digital Filters with Impulse Inputs.

a. Measurement Conditions.

(i) Test Filters: varicty of digital filters, one pole,

two pole, t_.1o pole plus zero as shown in Fig. 7 3.

(2) D1imic Filter Poles: s = -.055, -.167, -.5, -1.5, -4.5.

(3) Input for measurement of coefficients: an impulse.

(4) Input for mcasurement of error: an impulse.
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(5) Sample length: 48 seconds.

(6) Sampling interval: O.1 second.

b. Results.

In Table 7.1 are the mimic coefficients and the relative iSE in approxi-

mating the impulse responses of the one-pole test filtcrs. The errors are

less than one percent except for the filter whose pole is at s : -7.0, which

is outside the range spanned by the mimic poles. Thc large error in approxi-

mating this filter is caused, in part, by digital approximation errors. The

digital sampling interval is only slightly less than the time constant of

the filter. The error for the test filter with polc at s = -.5 is very

small. The difference between the mcasured error and thc expected error of

zero is probably due to round off and truncation errors incurred in the

course of computation. Note that as the pole of the tcst filter increases the

higher order mimic coefficients increase and the low order mimic coefficients

decrease.

In Table 7.2 are the rclatlvc ISE for the two-pole test filters, and

the two poles, one zero test filters. For both of these types of filters

the error is almost always less than one percent and is never creatcr than

one and one-half pcrcent. Thus, with the exception of the one-pole filter

with s = -7.0, all of the filters tested can be measured _lith loss than one

and one-half percent erron with a single set of mimic filters. This result

is obtained for filters whose poleq and zeroes span a 200 to I ra_c

2. Measuren_ent of Di_ita! Filters Havin$ Time Delay with Imoulse and

Random Inputs.

a. Measurement Condit_ onz.

(i) Test Filters: i) c-O'lS/(s+0.3)

2) e-O'ls/(s+2._)

3) e-O'lS/(s+O-S)(s+2-5)

4) e-O'ls(s+.SS3)/(_+O.3)(s+2.5)
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TABLE 7.2 - ANALYSIS OF TWO-POLE DIGITAL FILTERS.

MIMIC FILTER POLES SAME AS IN TABLE 7.I.

FILTER

(s + .o35)(s + 7.0)

(s + o.1)(s + 0.5)

(s + o.1)(s + .833)

(s + 0.1)(s + 2.5)

(s + 0.3)(s + .833)

(s + 0.3)(s + 2.5)

(s + 0.5)(s + 0.5)

1

(s + 0.5)(s + 2.5)

1

(s + .833)(s + .833)

(s + .035)

(s + o.3)(s + 2.5)

(s + o.I)

(s + o.3)(s + 2.5)

(s + 0.5)

(s + o.3)(s + 2.5)

(s + 0.833)

(s + 0.3)(s + 2.5)

RELATIVE INTEGRAL-SQUARE
ERROR IMPULSE RESPONSE

1.37%

0.26 %

o.15 %

0.22 %

0.62 %

0.73 %

1.21%

0.05 %

o.o5 %

0.16 %

0.16 %

o.14 %

o.11%
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(2) Mimic Filter Poles: sameas before.

(3) Inputs for measurementof coefficients:

I) Impulse
2) Unfiltered Impulsive Noise
3) Filtercd Impulsive Noise
4) Unfiltered Noise Input _¢Ith Unfiltered

Noise added to Test Filter Outputs to
Simulate Pilot Re_.ant

5) Filtered Noise Input with Unfiltered
Noise for Re_uant. The input was
filtered by I/(s + 5.0).

(4) Inputs for measurementof error: an impulse and an im-
pulse filtered by I/(s + 5.0).

(5) Sample length: 48 seconds.

(6) Sampling interval: 0.I second for inputs (!), (2), and
(3); 0.05 second for inputs (4) and (5).

b. Comparison ofL Results Obtained with Different Inputs.

Mimic coefficients were computed for each of the four test filters

when excited by each of the input signals listed above. For each set of

mimic coefficients the relative ISE in approximating the response of the

test filters to an impulse or to a filtered impulse was computed. These

errors are in Table 7.3. The ratio of remnant noise power to test filter

output power (before addition of noise) is indicated in the table for those

measurements in which remnant noise was added. All errors shown in Table

7.3 are for the case in which the O.1 second delay of the test filter is

compensated for exactly by the mimic.

As would be expected, the errors obtained with impulse inputs (Table

7.3, Column I) and unfiltered noise inputs without remnant (Column II) are

nearly equal. The mimic coefficients for these two inputs were also nearly

equal. This close match in results is expected since the unfiltered noise
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input is composed of a series of statistically indepcndent impulses having

approximately normal amplitude distribution.

The small differences bet_:ecn the in:pulse and the unfiltercd noise

measurements results are probably caused by end effects. In the impulse

measurements the response of test filter and mimic filters died out to zero

durirg the 48 second period used to compute the mimic coefficients, in the

noise measurements input excitation was applied for the entire 48 second

period and the transients did not die out.

In Column III of Table 7.3 are the errors in the filtcrcd impulse re-

sponse obtained when the mimic coefficients were measured with a filtered

noise input (without remnant). The errors :_ith all four test filters are

considerably less than one percent and not of grcat significance. The errors

are, however, somewhat different from the impulse response errors of Column

iI which were obtained by using unfiltercd noise to mcasure the mimic coeffi-

cients. The greatest change in error occurred with the two filters that had

greatest bandwidth, Filters (2) and (4). This result is expected since the

response of thcse two filters to an impulse filtered by 1/(s + 5.0) was con-

siderably different from the response to an unfiltered impulse. The high

frequency content was reduced greatly and the energy in the filtered impulse

response was considerably less than the energy in the impulse response.

The integral-square errors in impulse response obtained when the mimic

coefficients are measured with unfiltered noise input and with re_nant noise

added to the filter output are in Col%h'_n IV of Table 7.3. The errors are all

less than one percent. With one enception they are greater than the errors

in Column I obtained with coefficients measured with impulse input. This

result is to be expected since the errors _,;ithimpulse inputs are the minimum

that can be achieved.

For Filter (2) a smaller error was obtained with unfiltered noise input

plus remnant than with impulse input. This filter had a bandwidth of 2.5

radians per second. The impulse measurements werc made with a digital samp-

llng interval of 0.1 second; the noise measurements with a sampling interval
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of 0.05 second. The decrease in sa.v_plinginterval is probably responsible
for the sor,_ewhatsmaller crror. _]_enthe za_r,pling interval is .C5 second,
the digital test filter approximates muchmore closely the filter i/(s + 2.5)
than _hen the sampling interval is 0.i second. For the ether test filters,

_'.rhich have narrower band_;idth, the change in sampling interval does sot

result in as important a change in the test fiitcr.

Thc results with filtered random inputs plus remnant in Colun:_ts V and

VI are of considerable interest because this test situation corresponds

most closely to that usually encountered in measurement of pilot dynamics.

For all four filters, the impulse rcsponse errors in Coltm:n V are greater

than the iz_ulse response errors in Column IV obtained with unfiltercd noise.

There are two reasons for this increase: (1) The remnant with filtered noise

_.Jasconsiderably greater than that _ith unfiltered noise% and (2) the use of

filtered noise input results in attenuation of the high frequency portio:_ of

the test filter output used to measure the mimic coef_ic_cnt_ However, the

high frequcncy portion of the impulse response is not attcnuatcd. It is prob-

ably the high frequency portion of the test filter impulse responzc that is

not being mimiclced as accurately and which contributcs to the increasc in

error. Except for Filter (4), the errors are considerably less than one per-

cent. For Filter (4), the error is about two percent. IIo_Tever, note that

the red,cant was 40 percent for this measurement.

in Table 7.4 are the mimic coefficients for Filtcr (4) obtained with

each of the input signals. The first four coefficients are of in_portancc.

The fifth coefficient is small. The coefficients obtained with the first

three input signals are all very nearly the same. _e deviations from the

coefficients obtained with impulse inputs are in the third decimal place.

h_en remnant is added, the deviations became larger. For the filtered ran-

dom input plus remnant rather large differences in coefficients are observed.

However, the re_mant potter was 40 percent of the test filter output power.

c. Effects of Time Delay.

The four filters used in this experiment had a time delay of O.1 second.

This delay must be compensated in the measurement of filter characteristics.
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The results given in Table 7. 3_ a._....for thc case in _._hich the delay is com-

pensated exactly. In Table 7.5 arc relative integral-square errors for

different amounts of delay compensation.

The experimental conditions in Table 7.5 include unfilte:_ed and filt_..cd

random inputs with remnant addcd. Thc crror has been computed with impulse

inputs and 1._ith fi!tcred impulse inputs. The delay compensation is in in-

crements of 0.05 second, if a digital sampling interval of 0.i second were

used, one may not be able to rcducc the error in delay compensation to less

than 0.05 second. In Table 7.5 dcviation in dclay con_pcnsation from the

perfect compensation of 0.i second is sheba. This deviation is eq_al to the

delay in the mimic minus the delay in the test fi!tcr.

if the delay deviation is ncgative, the mimic i_a_ a shorter dc!ay than

the test filter and thc mimic rcsponds before thc test filter. Ini_ialiy,

the mimic attempts to suppress its response because there is no output from

the filter. However_ when the test filter begins to respond, the n_imlc must

attempt to match it. If the delay deviation is positivc, the mimic !:as more

delay than the tcst filter and the mimic responds after the test filter. The

mimic cannot match the initial part of the test filter response beca_se it

has not yet rcceived its input. This initial part of the tcs_ filter response

cannot be cancelled by thc mimic and represents an irreducible error.

In Fig. 7.4 photographs of the response of Filter (l_) to an impulse in-

put are sho_n. Also sho_..,n in the figure are the errors in response that

result with different amounts of delay compensation. Thc mimic coefficients

used to obtain these response errors _._ere those cor,puted with fiitercd _andom

inputs plus rcr_.ant and are the coefficients that gave thc relative error

scores sho_..n_ for Filter (I_) in Table 7.5.

As can be seen from Fig 7.4 the filtered impulse response cf thc _ _

filter rises smoothly from zero and the initial values of thc response arc of

relatively small magnitude. Hence, the integral-square errors are not highly

sensitive to the amount of delay compcnsatlon. In fact, in some cases, smaller

errors arc observed with delay compensation somewhat diffcrcnt from pcrfect



0

I

H

O

O

E_

I

tr_

b-

H

H

g

H

E-tr_

¢_1 al 0 _O_ 0.1 oD

c; c; c; c;
00_o_ 00 0 _0

,.-'40 _'N

o6c;

_oo

H

_oo

A

H

E_

E_

¢0

tO

0 u'_
0 0

ko

oJ 0 0

O_

o
O.I cO

o.1
o_

0

_oo

CO _0 O0 cO CO

0

_ _o o o-

A

+
A

0 _ 0 0

0

,-t °

I o!

CU
V

0 0

_oo I

A

V

_g_A

0_ ,-t



55

o

o

+

II

o

i

fl

g

H

O hn_

4o O _

-H r-H

_o

4-_ _0 _ O

r---I I1) O

_ _O

# °

_ 4o

.H

._n:J

22, 
_ ,---t

_) % 0.)
m O "1_

O ,--_ g-_

m

• rJl

"r-I

-H
0

q)

,-t ©
or'l _

O

4_ m



56

delay compensation. Thc impulse response of the test filter rises abruptly

and the initial values of the responses are largc. Hence, ti_e integral-square

error is highly sensitive to delay compcnsation. Least error is obtained

wi_h pe_-fect delay compensation.

Wc see from Table 7.5 that wi_cn unfiltered noise is uscd as thc input,

the smallest error is always obtained with perfect dclay compcnsatlon, if

the test filter has a single pole or if the number of poles cxccedz the

number of zeroes by one, thc impulse response of the test filter will havc

an initial discontinuity. We can appro_'[imate the ..... imnu!sc± -_ _or response

by a simple decayir_ exponential. Call the time constant of thc cxponcntial

the "effective tlme constant" of the filter. The relative ISE is, to a first

approximation, equal to the magnitude of the ratio IAcl/Teff, whcre m_ is

the delay deviation and Tel f is the effective timc constant of the filter.

Test Filters (2) and (t,) have small effective time con_ntc. The ratio

]ACl/Tef f is large for A_ equal to _+ .05 second and the relative errors are

large. Test filter (i) has a large effective timc constant and IAal/Tef f is

sr.'.allfor Ac equal to + .05 second. The relative errors -in impulse rcsponse

are s_:all.

If thc number of test fi!tcr poles exceeds the nun_ber of zcrocs by more

than one, the impulse response will begin at zero and rise smooti_ly. The

ISE will not increase greatly wiuh the dclay deviation Ac provided A_ times

the initial slope of the impulse response is small. If ti_e input is a filt-

ered impulse, the initial part of the response will rise smoothly from zero

even when the test filter has only one more pole than zero. Integral-square

errors for filtered impulse inputs will also tend to remain small as Aa in-

creases. The error scores in Table 7.5 follow this pattern.

The magnitude of the ISE caused by delay can be reduced by decrcasing

the sampling interval and thereby decreasing the size of the smallest incre-

ments of delay compensation. Since it is always possible to encounter a test

filter _ose delay lies halfway between the delay compensation increments

available to the computer, the maximum delay deviation is one-half the samp-

ling interval.
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Howevcr, if mimic coefficients must bc measured with filtere[i _..andom _n-

puts in the prcsence of remnant, it seems unavoidable that wit_ ccrtain types

of test filters errors will be made in measurir_ the delay of the system.

Nevertheless, the computed delay compensation will yield the lesst ISE apprcx-

imatlon to the response of the systc_n or human opcrator Chat is being measured.

3_ Analog Test Filter with LToise Input.

a. Conditions of E:[pcrimer.t.

(i) Test Filter: Analog I/(s + 0._).

(2) Mimic Filtcr Poles: Samc as before.

(3) Input for Ideasurc_cnt of Coefficients: _ite Noise pasccd

through filter with transfer function i/(s + 1.5).

Sample length: i50 seconds.

Sampling interval: 0.i second.

b. Results.

The mimic coefficients obtained by analyzing this fiitcr arc in Table

7.6. Also shown are cocfficlents obtained by analyzir_ a digital filter

having the same pole. The input for the measurement of the digital filter

was unfiltered digital impulsive noise.

The first three coefficients for the analog and digital filters arc very

nearly the same. Coefficients b 4 and b5 are not in good agreement, l[o_.:evc_.,

these coefficients are small and do not contribute much to the mimic responsc.

In Fig. 7.5 is a Bode plot of the transfer function of the mimic of this

analog filter. It agrees very closely with the true Bode plot of a filter

with transfer function I/(s + 0.5).

Titus, as we would expect, the mcasurement method, when applied to mcasure-

ment of analog filters, yields results that arc essentially the samc as those

obtained with digital test filtcrs. The differences, small as they arc, are

probably due to the fact that the digital filter only approximates the analog

filter.
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Figure 7.5.- Bode plot of analog filter i/(s + 0.5) obtained using mimicking

technique.

TABLE 7.6 - COEFFICIENTS FOR THE SAME ANALOG AND DIGITAL FILTER

TEST FILTER b I b 2 b3 b_ b5

DIGITAL I/(s + .5) .5962 .6992 .4029 .0019 .0029

ANALOG I/(s + .5) .7032 .4352 .0354 .0226•5970
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C. _,_ASUREMENT OF TIME-INVARiANT AND TIME-VARIANT HU_AN 0PEIDITOR DYNAMICS.

The analysis programs were used to determine quasi-linear transfer

functions or desc_iblng functions for human operator tracking response

characteristics in a simple manual control system (described in ref. 9)

The input signal to the control system was essentially white gaussian noise

filtered by I/(s + 1.5). The system dynamics was a simple amplifier with

unity gain. The input signal had fairly large high frequency content and

was moderately difficult to track. Measurements of time-variations in

h_man operator transfer function _;erc _ade by analyzing five second segz_ents

of input and operator response data. The mimic filters used in these measure-

ments had poles at s = -1.O, -1.73, -3.0, -5.19, and -9.0. The residual

error variance for the entire 150 second run was computed to be about eight

percent of the operator output power.

The mimic filter pole locations wcrc sclectcd so as to yield small Cbj

(standard deviation of the mimic coefficients) and still provide a good

approxiz_tion to a wide range of hu_uan operator characteristics. From meas-

urements of the closcd-loop transfer' function made with the mimic filter set

used to analyze the digital tcst filter discussed in Scctlon VII B, it was

observed that the amplitude ratio was appronimatcly 0 db for frequencies be-

low 1 radian per second and fell off rapidly above 4 radians per second.

Thus the poles of this transfer function were likely to be in the region be-

tween 1 radian per second and _ radians per second and perhaps bighter. To

make the bandwidth of the first filter large, thereby incrcaslng M (or

2W. T), the nun_ber of degrees of frecdoz_ in Eqs (4.6) and (5 8) the po!c
j_ • . :

of the first filter was placed at s = -!.0. This is roughly the f:'equency

of the first significant change in amplitude ratio. The poles of the remain-

ing v_ere spaced equally on a logarithmic scale, the ratio of the polo posi-

tions being_/_. This ratio gave a set of mimic filters whose poles wore

likely to span the region in which the poles of the transfer function being

measured were thought to be.

in Table 7.7 are the mimic coefficients for the first l0 five second

segments of the tracking run and for the entire 150 second tracldng run.
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TABLE 7.7 - MIMIC COEFFICIENTS FOR HU_.L_NOPERATOR TRACKING CHARACTERISTICS

FIRST TEN 5-SECOND SEGMENTS AND ENTIRE 150 SECOND TRACIC[NG RUN

gIVE-SECOND
SEGMENT NUMBER

I I I I II

1

2

3

4

5

6

7

8

9

i0

bI

1 .ii

1.14

.98

.91

.86

.86

.97

.79

.47

.80

MIMIC COEFFICIENTS

b2
I

I.o5

i.20

.88

1.04

1.o9

.84

1.06

.48

.55

.59

.88

b3

1.29

1.32

.82

I.i0

1.00

.90

1 .O2

.50

.59

.69

.89

b4

.81

1.26

.73

1.06

1 .o7

.85

.72

.37

._8

.50

.65

.49

.61

.52

.45

.43

.15

.46

.17

.ii

•24

.27Entire TrackinE Run .99
of 150 seconds
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These coefficients are for the closed-loop characteristics of the control

system. The delay compensation that gave least iSE was 0.1 second.

In Fig. 7.6 are Bode plots of the transfer function of the closed loop

for the entire run (Fig. 7.6a) and for the sccond and ninth five second

segments (Fig. 7.6c and 7.6d). These transfer functions includc the time

delay of O.1 second. In Fig. 7.6b are Bode plots obtained by analyzing the

same data with a cross-spectrum computer built several years ago to analyzc

human operator tracl_nz data (ref. 9). The agreement in the Bode plots

obtained by the two methOdS of computation, Figs. 7.6a and 7.6b, is close.

The greater scatter in the spectral analysis results is caused by thc nar-

row bandwidth of the filters used in that analyzer. The Bode plots for ti_e

second and ninth five second segments of tracking data, Figs. 7.6c and 7.6d,

show considerable difference in amplitude ratio of the transfcr functions.

Oscillograph records of input and response signals also show that the gain

for segment 9 is much lower than seg_nent 2. Differences betwccn coefficients

b l, b 2, and b 3 for segments 2 and 9 were statistically significant at the

0.9 level.*

in Fig. 7.7a are plots of the po_er cpectra of the input signal and

output signal. These spectra measurements agree closely _ith measurc_cnt_

_de using the cross-spectr_m computer. In Fig. 7.7b is a plot of _he po_or

spectrum of the pilot's remnant. The remnant spectrum obtained with the

cross-spectrum computer is plotted in Fig. 7.7c. The greater scattcr in the

cross-spectral measurements of remnant (Fig. 7.7c) is probably a result of

the fact that the remnant spectrum was computed from Eq. (3.27) rather than

from the rermaant signal e(_) as was the case for the spectrum in Fig. 7.7b.

It should be noted that these measurements of human operator dynamics

are of the closed-loop transfer function and were made using the forcing

function input to the system and the pilot's response. The mimicl_ng tech-

nique offers the possibility of measuring directly pilot open-loop transfer

function by using the error and response signals. This l_nd of measurement

* Differences were tested using the t test as discussed in Section iV B.
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is not possible with the usual cross-spectral tcchniqucs. For control

situations in _.;hichappreciable error power cxists beyond the effective

bandwidth of the system input forcing function (such as misht be observed)

wi_en the pilot is controlling a lightly dampened vehicle with a natural

frequency higher than the input band_idth), thc error power at these frc-

quencies would be included in thc pilot's rer_ant if cross-spectral meti_ods

of analysis were used. If the mimicl_i_ technique were used, this component

of error _uld probably be accounted for in the pilot's transfer function.

%_ have not yet been able to determine if the pilot's transfer function

determined from closed-loop measurements (using input signal) is different

f_'om ti_at determined from open-loop measuren_ents (using the error signal).

The mimicking technique makes possible comparison of these two types of

transfer function. It would seem that tiue open-loop measurement, since it

actually takes into account all of the sisnal to which the pilot rcsponds

(not just the part correlated with the input), should be a more appropriate

dcscrlptlon of pilot behavior.
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VIII. CONCLUSIONS

The theoretical and experimental results demonstrate that the moazure-

ment by mimicking technique is well suited to measurement of linear time-

Invarlant and linear time-varlant dynamic syatems _ose output is dlsturbed

by noise. The technique has a n_mbcr of advantages. The use of a mimic

composed of a set of physically realizable filters insures that the system

characteristics determined from the measurements will also be realizable.

As a result, control system elements can be measured in s!tu, that is, with

the signals normally circulating in the control loop and without alterin_j

the _ connections of the system without encountering difficulties with respect

to the realizability of the measured characteristics (ref. 19). A zecond

_dvantage stems from the fact that the entire covariance matrix of Zq. (3.9)

is used to determine mimic coefflcients_ not just the diagonal termz.

Therefore, it is not necessary to require that the filter outputs be orth-

ogonal over the sample used in the measurement, as is the case in po_.._er

spectral analysis method of measurement (ref. 9). Consequently, shorter

samples of signals can be used than would be possible if orthogonallty were

necessary. Third, few restrictions are placed on the type of filters used

in the mimic. By choosing filters that resemble the characteristicz of the

system being measured, the variance of the measurements can be reduced or,

alternatively, the sample length can be reduced.

Perhaps, the most important advantage of the measurement by mimicking

technique is the relative simplicity of the relations for the variance of

the mimic coefficients, Eqs. '(4.1) and (4.6). Sample length requirements

can be estimated easily from these equations. Confidence limits for

measured values of the coefficients can be made using simple statistical

techniques.

The variance of the measurements of mimic coefficients determines the

sample length required to find the mimic coefficients to within specified

confidence limits. The variance of the mimic coefficients depends directly

upon the variance of the residual, inversely upon the bandwidth of the

residual, and inversely upon the variance of the part of the output of each
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mimic filter output that is uncorrelated with the other filter outputs.
It also depends upon the bandwidth of the uncorrelated part of the mimic
filter outputs.

By choosing mimic filters carefully, the residual variance can be
reduced, and the bandwidth of the mimic filter outputs can be increased.
The mimic filters should be chosen so that their impulse responses resemble
the impulse response of the system being measured. If this is done an
accurate representation of the system can be obtained with only a few filters.
0rthogonalized exponential filters having real poles are recommendedfor
_neasurementof systems whosepoles are also real or located close to the
_eal axis of the complex frequency plane. A single set of five such filters
with poles spaced uniformly on a logarithmic scale is capable of approxi-
mating the impulse responses of a wide varicty of systems with a relative
integral-s_uare error of about one per cent or less.

In an actual measurementsituation, the following procedure,
_vhlchwas employed in making the measurementsof humanoperator time-varying
characteristics discussed in Section VIIC, is a reasonable one to use when
applying the measurementby mimicking technique. Estimate the approximate
location of the poles of the system being measured. Take a relatively long
sample of data and analyze it with a set of mimic filters whosepoles more
than span the range of the poles of the system. A good choice is a set of
mimic filters whosepoles are spaced uniformly on a logarithmic scale.
Using the results of the measurements, choose another set of mimic filters
that are better matched to the system characteristics in the sense that this
second filter set resembles the system as closely as possible. Choose
filters whosebandwidths are as large as possible consistent with the re-
quirement for a good match. This second set of mimic filters will provide
a better approximation to system characteristics and will yield mimic coef-
ficients having smaller variance than the first set. It will also be
better suited for determining time-varying characteristics of the system
or of the humanoperation.

Bolt Beranek and NewmanInc.
Cambridge, Mass., July 31, 1962
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APPENDIXA

iMPLES_ENTATIONOFANALYSISTECHNIQUE

A. DIGITAL IMPLEMENTATION

To carry through an analysis of hu_uanpilot dynazic characteristics, a
number of different kinds of mathcnlatical opcrations are required. To deter-
n_inea quasi-linear transfer function for the pilot, the input signal x(t)
must be filtered by the mimic filters; the covariance matrix I__of Eq. (3.12)
must be computed; the matrix equation (3.12) must be solved for the z_imic
coefficients; the mimic transfer function must be determined; and thc trans-
fer function must be plotted vs. frequency. A similar set of operations is
required to determine the power spectrum of the remnant.

it is desirable to perform all thcse opcrations on a singlc computcr so
that a complete analysis of pilot charactcristics can bc performed _;ithout
resorting to hand computations and manipulations of data or intcrmediate
results. Although the filtering opcrations are easily donc on an analog
computer, most of the other functions cannot be handlcd easily on such a
computer. A high speed digital computer can perform thc filtration and is
well suited for all the other operations including preparation of plots of
transfer functions.

Wehave used a high speed digital computer to implement and evaluatc
the analysis technique discussed in this report. Programs to perform the re-
quired mathematical operations have been written for the Digital Equipment
Corporation's PDP-1Bcomputer (ref. 34). It is a high spccd (lO microsccond
add time, for example),relatively low cost (approximately $150,000) n_achine

that has good input-output facilities. Clearly the measurement technique

can be programmed on other digital computers. It is hoped that this appcndix

will provide sufficient information for writing such programs. The ortho-

normal filtering and covariance operations are easily programmed for an ana-

log computer (see ref. 26 for discussion of analog implementation), but the

_trix operations are not easy to do on such a machine.
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B. FUNCTIONALDESCRIPTION

In Fig. A.1 is a flow diagram showing the principal operations performed
by the digital computer analyzer programs. The operations are divided into
three groups: Group I is Data Acquisition; Group II is Analysis; and Group
!Ii is Transformation and Display.

The Data Acquisition Group perfoi_ns the tasks of (i) digita!izir_ thc

analog input and output signals, (2) compacting the digitalizcd signals for

efficient storage of data, and (3) producing a punched paper tape containing

the digitalized signals. This digital tape is thcn used as the input to the

Analysis programs. The digitalization is performed by a commercial analog-

to-digital converter.

Since two signals, input x(t) and y(t), must be converted, a relay com-

n_tator is used to connect the converter alternatively to the two signals.

The Compacting program combines the two nearly simultaneous samplcs of input

and output into one computer word and stores the word in memory. The Tape

Preparation program punches the stored data on paper tape or _rites it on

magnetic tape instead of paper tape.

The Analysis Group of operations is performed in two steps. First, as

sho_._ in Group IIa of Fig. A.1, the digital data tape is read in and fed to

the Delay Compensation program. This program advances pilot output y(t) in

time relative to the input x(t). Several output signals, y (t + 5), are

obtained from this program, each advanced in time a different amount. The

input x(t) is fed to the Analysis Filter program. This program simulates a

set of orthonorv_l analysis filters constructed using the ]_utz procedure,

Eq. (6.4). The filter outputs are used by the Covariance program to compute

the covariancematrix _ of Eq. (3.i2) and the covariance vector _ of that

equation. These covariances are used by the Matrix Solution program to find

mimic coefficients. A set of mimic coefficients are determined for each

delay compensation. The delay compensation that provides the best approxi-

mation to pilot output is identified. The Covariance program also computes

the covariances z---__xof Eq. (3.19), which are the coefficients of the series
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representation for the autocorrelation function of the input, Rxx(t'), of

Eq. (3.18). The output signal y(t) is also fed to a set of analysis filters

and the eoefflcients of the series representation of the autocorrelation

function of the y(t), Ryy(t'), are determined. The variances of x(t) and

y(t) are also computed by the Covariance program.

In the second part of the Analysis Group (Group IIb in Fig. A.1),

the residual signal c(t) and its autocorrelation function are computed.

The digital data tape is read again and the input x(t) is fed to the Delay

Compensation program. This programdelays the input by an amount equal to

the time delay that was found in the first part of the analysis to give

the best approximation to pilot output. This delayed input is fed to the

Analysis Filter program. The Simulate program weights each of the outputs

of the Analysis Filter program by the appropriate mimic coefficient as

determined in the first part of the analysis. The weighted outputs are

s_ued to give the mimic output z(t), which is subtracted from the pilot

output y(t) to yield the residual ¢(t). The residual is fed to the

Analysis Filter program and the coefficients of the series representation

of the autocorrelation function of the residual, Rc¢(t'), are computed

frcm the filter outputs by the Covariance program. The variance of the

residual is also computed by the Covariance program.

The Transformation and Display Group of programs (Group III in Fig. A.1),

computes the transfer function of the mimic and the power-density spectra

of input, output and residual. These computations require the coefficients

of the mimic and the coefficients of the series representation of the input,

output and residual autocorrelation functions, and are performed by the

Fourier Transform program. The amplitude ratio and phase of the transfer

function and the power spectra are determined at as many frequencies as

desired. These are spaced uniformly on a logarithmic scale. The amplitude

ratio and power spectra are converted to a decibel scale. The Display

program generates a grid and then plots the amplitude ratio in db, the phase

angle in degrees, and the power spectra in db against the logarithm of

frequency. In this way Bode plots of the pilot's characteristics can be

obtained and photographed. Paper tapes containing the numerical values.

of the displayed quantities can be produced if desired.
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The first part of the Analysis Group of programs takes about 0.2
second per data point analyzed to perform its entire set of operations.
Thus, if humanoperator data is sampledat the rate of ten times per second,
the mimic coefficients and coefficients of the input and output spectra
could be computedat twice running time. The second part of the Analysis
Group requires about O.1 second per data point. The entire Analysis Group,
therefore, will take 'three times real time for a sampling rate of ten per
second. The Transform and Display Group of programs requires about 0.7
second to compute the mimic transfer function and the three power spectra
per frequency.

C. ORGANIZATIONOFCOMPUTERPROGRAMS

About I00 individual programs or subroutines are used to implement
the analysis technique. These programs have been organized into a hier-
archy of Utility and Computation subroutines, Control programs and Master
programs. The Control programs perform the functions represented by the
blocks of Fig. A.I. That is, the blocks labelled Analysis Filter, Covari-
ance, Simulate, etc. each designate a Control program. The Control programs
call Computation and Utility subroutines to do the arithmetical and logical
operations required for the function being performed. A Master program
calls the Control programs in proper sequenceand designates the location
of the arguments to be used by each Control program. The sequence of func-
tions indicated by the flow diagrams of Fig. A.I is determined by a Master
program.

Control programs are always called by the Master program and always
return to the Master program whenthey have completed the operations they
perform. Computation subroutines are called by Control programs and return
to the Control program. Similarly, the Utility programs return to the Con-
trol or Computation programs that called them.

A "Table of Contents" and a "Table of Arguments" are used in the pro-
grammlngsystem. The Table of Contents is an itemized list of all the pro-
grams that are in the computer and gives the beginning address of each pro-
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gram. All programs are called by referring to a memoryregister in the
Table of Contents and then transferring control to the instruction _vhosc
address is the contents of that register. That instruction is the initial
instruction of the program desired. The Table of Arguments is a lizt of
parameters and addresses of parameters that are used by Control prosrams.
For example, the Table of Arguments contains the address of the input to be
used by the Analysis Filter program at a particular stage of the analysis
and the initial address of the block of memoryin which the filter outputs
should be deposited. Space is allotted in the Table of Arguments for each
of the Control programs that can be called by the Master programs. Computa-
tion and Utility subroutines always are given the arguments they require or
their locations by the Control program that calls them.

To perform a particular operation, such as Analysis Filter, the Master
program specifies the initial location in the Table of Arguments of the set
of arguments required by the Analysis Filter Control program. The Master
program then calls the Analysis Filter Control program by specifying the
address in the Table of Contents of that program. The following is a portion
of the Master program that causes the digital data input to be read, the
signals to be compensatedfor time delay, and both input and output to be
filtered by the Analysis Filter program. These are the first few operations
performed by the Analysis Group of Fig. A.1.

input 3
law 1

delay comp
law 1
filter
law 2
filter

The instruction "input 3" causes the computer to go to the register in the
Table of Contents that contains the address of the first instruction of the
"input 3" program and then to execute that instruction. The "input 3"
program is the program that reads the digital data tape. Since only one
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set of arguments is used with that program, desi_nation of arguments is not
necessary. "law l" and "law 2" are computer instructions that cause the
ntumbersone (1) and two (2) to be deposited in the accumulator. These
munbers designate the first and second sets of argL_cnts for the p:-ogram
whose namefollows the "law" instruction. The instructions "delay co_p_'
and "filter" refer to the locations in the Table of Contents that contain
the addresses of the first instructions of the Delay Compensationand of
the Analysis Filter Control programs. Since two signals are to be filtered
by the Analysis Filter program, two different sets of arguments must be
designated. Note that "law l" precedes the first filter instruction and
"law 2" precedes the second.

Master programs are short and simple. They are easy to write or change
in the event somemodification in the analysis technique is required. Ti_e
Table of Contents and Table of Arguments provide considcrable flexibility in
the use of programs. Whennewprograms are added to the system, old pro-
grams are modified, or the locations of programs are changed, only changes
or additions to the appropriate initial addresses contained in the Table of
Contents are required. Sinceall programs are called through the Table of
Contents, it is not necessary to changeany of the calling sequences of
existing programs or to recompile or reassemble existing programs. Changes
in the arguments used by a program can be madeby changing entries in the
Table of Arguments or by changing the "law" instructions in the Master pro-
gram so that different sets of arguments are used.

D. PROGRIC_DETAILS

1. Group I - Data AcQuisition.

Mercury-wetted relays under computer control are used to commutate

between the input and output analog signals. Maximum commutating rates of

the relays are about 200 per second, allowing a sample from the pair of

signals at a rate of 100 per second. An Epsco TB 711 Transicon (ref. 37)

is used as the analog-to-digital converter.
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The Conversion program first switches a relay, instructs the analog-

to-digltal converter to take a sample, waits until the converter indicates

that it has converted the sample, and then reads the output register of the

converter. The relays are then switched and the converter reads the second

channel as soon as possible after the first channel of data is taken. The

computer waits until the computer clock indicates that it is time to take

another pair of samples.

%'_lle waiting, the computer compacts the pair of samples into one word.

The signals are also displayed on the cathode ray tube display of the com-

puter and the operator is provided with a continuous monitor of both data

channels. The computer will not start storing data into memory until it ha_

been instructed to do so by the operator. At the conclusion of the data run,

the data is punched onto paper tape.

With a sampling rate of ten per second, approximately 350 seconds of

data can be stored in memory-when the sampling rate is ten per second.

When magnetic tape storage is used, converted data can be written on the

tape as rapidly as it is sampled and the size of the computer memory does

not limit the length of the tracking run that could be converted.

2. Analysis Group.

a. Analysis Filter Program.

The Analysis Filter program simulates a set of orthogonalized exponen-

tial filters constructed according to the Kautz procedure, Eq. (6.4).

As many filters can be contained in the set as desired, in most of our work,

we have used four or five filters.
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The Kautz filters have the transfer functions that can bc _.zrittcn

Vr_l

•1(s)-
(s+ 5)

J_2 (s - sI) s_ (s - s_l! _i(s)_2(s)= (s + sl)(s+ s2) = (_ + _2)

¢3(s) =_ (s - s2) °2(s)(s + s3

(A.I)

(s - si_ I)

(s + s,)

The first filter is a simple first order lag. The second filter is a

cmscade connection of the first filter and a filter havin£ a transfer

function

s_ (s - s1) (,_.2)(s+ s2)

All succeeding filters can be constructed by eascadin_ the previous

filter and a filter having a transfer function of the form of Eq. (A.2).

The transfer function of Eq. (A.2) can be decomposed as follo::s:

s_s _ (s- Sl) = _2__ _ _2__ (s2 + Sl) (A.3)(s + s2) .'V sI "V sI (s + s2)

Equation (A.3) is recognized as a transmission plus a first order laG .

Taking advantage of Eq. (A.3), the set of orthonormal filters of the form
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of Eq. (A.I) can be synthesized from simple first order lags and simple
transmissions in the manner shownin Fig. A.2.

The basic building block of the filter set is a first order la6,
1/(s + si). The impulse response of a filter of this form is

-sit
gi(t) = e (A.4)

In terms of the impulse response, the output of the filter r(t) is

rCt) = I t cCt,) gCt-t,)dr,

or

rCt) = /t. cCt') e

where c(t) is the input to the filter.

-si(t-t')
dt'

(A.5)

The digital computer has only sample values of c(t) available to it.

An approximation to Eq. (A.5) is desired when these sample values are used.

Assume that samples of c(t) and r(t) are taken every h seconds. The value

of c(t) and r(t) at time t = nh will be designated C(tn) and r(tn).

Equation (A.5) may be written:

since

then

ftn+ 1 -t')r(tn+l) = c(t') e-si(tn+l dt' (A.6)

tn+ 1 = tn + h,

-sih /tn -si(tn-t')
r(tn+l) = e eCt') e dr'

+ /tn+l c(t') e-si(tn+l-t') dr'
t

(A.7)
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The first integral on the right is equal to r(tn). The second in-

tegral must be approximated from values of c(t) at tn and tn+ 1. We have

used a trapezoidal rule for numerical approximation of the integral.

Using this rule, we obtain

-sih ]-slh h C(tn) er(tn+l) = r(tn) e + _ O(tn+ l) +
(A.8)

Thus, the value of r at tn+ 1 is related to the values of r and c at tn

and to the value of c at tn+ 1.

By making use of Eq. (A.8), we obtain the following equation for the

digital approximation to the first filter of Fig. A.2.

Ix -Slh] -Slhzl(tn+l) = Cl 2 h (tn+l) + X(tn) e + zl(tn) e (A.9)

The equations for the second filter are

z2(tn+l) = C21Zl(tn+l) + C22 zl(tn+l) + zl(tn) e

-s2h
+ r2(tn) e

+ e-s2h ]r2(t n) = C22 _ [zl(tn) zl(tn_ I)

-s2h
+ r2(tn_l) e

(A.IO)

Succeeding filters are approximated by equations similar to Eq. (A.10).

From Eq. (A.3), it may be seen that

C12 =_

and

for i _ 1

(A.ll)

Ci2 == F (s2 + Sl) for i _ 1
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A single exponential filter program based on Eqs. (A.9) and (_\.i0)

is used repetitively to perform the several filtering operations indicated

in Fig. A.2. The first data point of the input is applied to the filter

program, producing the first output point of filter 1. This output point

of filter 1 is now used as the input to filter 2, and so forth. The computa-

tion is performed point by point. The constants used by the program to

simulate the set of filters dlagram.med in Fig. A.2. C12, C22 , C31 , etc., are

computed in advance and stored in a table. These constants are used as

required by the program.

The digital filter does not of course match an analog exponential

filter exactly. The difference between the output of the digital filter

and the corresponding analog filter depends upon the input. If the input

is an impulse, the initial point of the response of the digital filter will

be one-half of the correct value. All other points will equal the analog

filter response.

b. Covariance Program.

The covarlance of two signals is computed by using a Simpson's Rule

approximation for the integral

A IT zi(t ) zj(t) dt (A.12)
T o

The covariances are computed point by point.

The accuracy of the Simpson's Rule approximation used in the covariancc

program has been evaluated by computing covariances of known functions. The

approximation is satisfactory for the kind of analysis being performed. For

example, when the covariance program is used to find the integral square of

the impulse response of a simple exponential filter, the computed values

are within 0.5 per cent of the correct values when the sampling interval h

is between .02 and .5 times the filter time constant (ref. 36). Actually,

most of this error results from the trapezoidal approximation used in the

Analysis Filter program rather than from approximations in the Covariance

program, %'_en the Covariance program is used to find the integral square of

the exact exponential function

r(t n) = e -'Snh (A.13)

a value of 0.999862 is obtained. This differs by .0138 per cent from unity,
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the value of the integral square of the corresponding continuous function
( ref. 37)

r(t) = e-'5t (A.!4)

c. Matrix Solution.

The set of equations, Eq.(3.9), is solved by a simple iterative tech-

nique. The first equation is solved for b I by setting all other coeffi-

cients to zero. This value of b I is used to find b 2 in the second equation

when all higher order coefficients are equal to zero. Initial values of

the remaining coefficients are found by continuing this process. The initial

values for all coefficients except b I are then substituted into the first

equation, and a new value for b I is obtained. This value is used in the

second equation to find b 2. The process is continued until the fifteen most

significant binary digits of all coefficients remain unchansed after two

successive iterations.

After the mimic coefficients are computed, the program computes the

integral square of the residual error. Equation (3.26) is used to obtain

the residual integral square from the covariances s2 and -- When the
y ziY"

residual error is very small, this method of computing the residual intesral

square will be inaccurate because the computation involves subtraction of

large numbers whose differences are small.

3. Transformation and Display Group.

a° Fourier Transform ProGram.

This program first computes the real and imaginary parts of the Fourier

transforms of the orthonormal filter impulse responses used in the Analysis

Filter program. These transforms are the transfer functions of the filters.

The program then uses these transfer functions to find the mimic transfer

function and the power spectra of the input, output and residual signals.

All of these Computations are performed for each frequency.

The transfer function of the digital low-pass filter that forms the

basis of Fig. A.2 can be computed by taking the z-transform of Eq. (A._).
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The relation

Rn+l(Z ) = z Rn(z )

is used to relate the z-transform of r(tn+ I) and r(t n) (ref. 38).

z-transform of Eq. (A.8) can be written

(A.15)

The

Rn(Z) = h 1 + z -I e -sih]

Cn(Z) 2 1 - z-I e-slh]

This is an exact expression for the digital filter.

verted to frequency domain by noting that

z = eja_

(A.16)

It can be con-

(A.17)

Mmking this substitution, we obtain for the transfer function of the

filter of Eq. (A.8)

Gi(J_) Rn(J_) h
2

Cn(J_)

i + e -ja'h e -sih"

i - e -ja_h e -sih

(A.18)

where Rn(J_ ) and Cn(J_ ) are the Fourier transforms of the s_mpled vcrslons

of the signals r(t) and c(t).

The transfer functions of the mimic filters of Fig. A.2 can be obtained

by proceeding in the same way. For example,

h
el(j ) = ei_l(j ) Oil + ci2

b. Display Program.

(I + e -jab e-Sih)j ]
!

(I e -jch e-Sin)]

(A.19)

The display device is a cathode ray oscilloscope controlled by the

computer. Individual points of a matrix of 1024 by 1024 points can be dis-

played. As a part of this analyzer, the digital oscilloscope is used to

display portions of the input, output, mimic, or remnant signals as a

function of time. It is also used to display the Bode plots of the system

or pilots being analyzed and plots of the power spectra of the signals in

the system. Coordinate grids are also displayed for these plots.



82

R,_ERENCES

lb

2_

t

_m

e

1

e

So

e

James, H.M., Nichols, N.B., and Phillips, R.S., Theory of Servo-

mechanisms, McGraw Hill, New York, 1947.

Weiss, H.K., "Recommended Tracking Ratios for T36 Director," i_emo

to President Antiaircraft Artillery Board, September 1943.

Weiss, H.K., "Improvement of Tracking with Disturbed Reticle SiGhts,"

Memo to President Antiaircraft Artillery Board, Fort Bliss, Texas, 1945.

Tustin, A., "An Investigation of the Operator's Response in Manual

Control of a Power Driven Gun_" C. S. Memorandum No. 169, Metropolitan-

Vickers Electrical Co. Ltd., Attercliffe Common Works, Sheffield,

England, August 22, 194_.

Tustin, A., "The Choice of Response Characteristics for Controllers

for Power Driven Guns," C.S. Memorandum No. 184, Metropolitan-Vickers

Electrical Co. Ltd., Attercliffe Common Works, Sheffield, England,

October 10, 1944.

Tus_In, A., "The Nature of the Operator's Response in Manual Control

and Its Implications for Controller Design," J. of the I.E.E., Vol. 94,

Part IIA, No. 2, 1947.

McRuer, D.T., and E.S. Krendel, "Dynamic Response of Human Operators,"

WADC-TR-56-524, Wrig÷ht Air Development Center, Wright-Patterson Air

Force Base, Ohio, October 1957.

Licklider, J.C.R., "Quasi-llnear Operator Models in the Study of

Manual Trackingj" Developments in Mathematical Psychology ed.

by R.D.Luce, Glencoe, Illinois: The Free Press, 1960.

Elkind, J.l., and C.D. Forgie, "Characteristics of the Human Operator

in Simple Manual Control Systems," IRE Trans. on Automatic Control,

Vol. AC-_, pp. 44-55, May 1959.



83

lO.

ll.

12.

13.

14.

15.

16.

17.

18.

19.

Russell, L., "Characteristics of the Human as a Linear Servo-Element,"

M.S. Thesis, Elect. Eng. Dept. Mass. Inst. of Tech., Cambridge,

Massachusetts, May 1951.

Hall, I.A.M., "Effects of Controlled Element on the Htunan Operator,"

Aeronautical Engineering Lab. Rept. 389; Princeton University,

Princeton, New Jersey, 1957.

Sheridan, T.B,, "Time-Variable Dynamics of Human Operator Systems,"

AFCRC-TN-60-169, Air Force Cambridge Research Center, Bedford,

Massachusetts.

Huggins, W.H., "Experimental Determination of Transfer Functions for

Human Operators and Machines," unpublished memorandum, Air Force

Cambridge Research Center, Cambridge,Massachusetts, October 1949.

Wiener, N., Extrapolation, Interpglation and Smoothing of Stationar_

Time Series, John Wiley and Sons, New York, 1950.

Lee, Y.W., Statistical Theory of Communication, John Wiley and Sons,

New York, 1960.

Elkind, J.I., "Tracking Response Characteristics of the Human Operator,"

M.S. Thesis, Elect. Eng. Dept., Mass. Inst. of Tech., Cambridge,

Massachusetts, May 1952.

"Investigation of Control Feel Effects on the Dynamics of a Piloted

Aircraft System," Goodyear Aircraft Corp. Report GER 6726, April 1955.

Ornstein, G.N., "Applications of a Technique for the Automatic Analog

Determination of Human Response Equation Parameters," Report No.

NA61H-I, North American Aviation, Inc., Columbus, Ohio, January 1961.

Goodman, T.P. and J.S. Reswick, "Determination of system Characteristics

from Normal Operating Records," Trans. ASME, February 1956.



84

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Levln, M.J., "Optimum Estimation of Impulse Response in the Presence

of Noise," IRE Trans. on Circuit Theory, Vol. CT-6, pp. 50-56,

F_rch 1960.

Cramer, H., Mathematical Methods of Statistics, Princeton University

Press, Princeton, New Jersey, 1951.

Hald, A., Statistical Theo_j with En$ineerin$ Applications, John Wiley

and Sons, New York, 1952.

Levlnson, N.L., "The Wiener Rb_ Error Criterion in Filter Design and

Prediction," Appendix to Extrapolation, Interpolation and Smoothin_

of Stationary Time Series, by N. Wiener, John Wiley and Sons, New York,

1950.

Gabor, D., W.P.L. Wilby, R. Woodcock, "A Self-0ptimizinG Non-Linear

Filter, Predictor, and Simulator," Information Theory, C. Cherry

(editor), Butterworth's, London, 1961.

Knowles, W.B., et al. "A Correlation Analysis of Tracking Behavior,"

Psychometri!_, Vol. 22, No. 3, PP. 275-287, September 1957.

Huggins, W.H., "Representation and Analysis of Signals, Part I: The

Use of Orthogonallzed Exponentials," AFCRC TR 57-357, Air Force

Cambridge Research Center, Bedford, _ssachusetts, September 1957.

Kautz, W.H., "Transient Synthesis in the Time Domain," IRE Trans.

on Circuit Theory, Vol. CT-1, pp. 29-39, September 1954.

Laning, J.H., and R.H. Battin, Random Processes in Automatic Control,

McGraw-Hill, New York, 1956.

Lampard, D.G., "A New Method for Determining Correlation Functions of

Stationary Time Series," Prec. I.E.E., Vol. 102, Part C, pp. 35-41,

1955.



85

30. Shannon, C.E., and W. Weaver, The Mathematical Theory of Com_unica-

tlon, University of Illinois Press, Urbana, Illinois, 1949.

31. Davenport, W.B., Jr., Johnson, R.A., and D. Middleton, "Statistical

Errors in Measurements on Random Time Funtions," J. of Applied

physics, Vol. 23, No. 4, pp. 377-388, April 1952.

32. Booton, R.C., "An Optiminzation Theory for Time-Varying Linear Systems

with Non-Statlonary Statistical Inputs," Proc. IRE, Vol. 40, pp. 977-

981, August 1952.

33. Elkind, J.l., and D.M. Green, "Measurement of Time-Varylng and Non-

linear Dynamic Characteristics of Human Pilots," ASD-TR-61-225,

Aeronautical Systems Division, Wrlght-Patterson Air Forcc Base,

Ohio, May 1961.

34. "Programmed Data Processor-l," Digital Equipment Corporation, Maynard,

Massachusetts, 1961.

35. "Preliminary Instruction Manual, Transicon Datrac Voltage-Digital

Converter," Epsco, Inc., Cambridge, Massachusetts.

36. "Quarterly Progress Report No. 3, Experimental Study and Development

of Analysis Techniques for Human Operator Dynamic Characteristics,"

Contract NASw-185, Bolt Beranek and Newman, Cambridge, Massachusetts,

March 1961.

37. "Quarterly Progress Report No. 2, Experimental Study and Development

of Analysis Techniques for Human Operator Dynamic Characteristics,"

Contract NASw-185, Bolt Beranek and Newman, Cambridge, Massachusetts,

January 1961.

38.. Ragazzini, J.R., and G.F. Franklin, Sampled Data Control Systems,

Mcgraw-Hill, New York 1958.

NASA-L_gJ_y,,_s_ D-1897




